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We determined the expression of both mRNAs and microRNAs (miRNAs) from human mesenchy-
mal stem cells BM19, FM30, and AM3, which is derived from breast, face, and abdominal adipose
tissues, respectively. BM19, FM30, and AM3 cells exhibited considerably similar mRNA profiles,
and their 1,038 abundantly common genes were involved in regulating six cell adhesion and
three cytoskeleton remodeling processes among the top ten GeneGo canonical pathway maps.
The 39 most abundant miRNAs in AM3 cells were expressed at very similar levels in BM19 cells.
However, seven abundant miRNAs (miR-19b, miR-320, miR-186, miR-199a, miR-339, miR-99a,
and miR-152) in AM3 cells were expressed at much lower levels than that in FM30 cells, and 38
genes targeted by these miRNAs were consequently upregulated more than 3-fold in FM30 cells
compared with AM3 cells. Therefore, autologous abdominal adipose-derived mesenchymal stem
cells are suitable for tissue engineering of breast reconstruction because of very similar expres-
sion profiles of mMRNAs and miRNAs between AM3 and BM19 cells. Conversely, abdominal AM3
cells might not be suitable for facial rejuvenation, since the 38 highly expressed genes targeted by
miRNAs in FM30 cells might play an important role(s) in the development of facial tissue.
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Mesenchymal stem cells (MSCs) have been shown to
have the ability to differentiate into multiple mesoder-
mal lineages such as adipocytes, osteoblasts, and chon-
drocytes [1,2]. Thus MSCs are potentially very useful
for tissue engineering and regenerative medicine [3-5].
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Human MSCs have been isolated from several tissue
sources, including adipose tissues [6-10]. Human adult
adipose tissues are highly abundant and relatively
easy to procure with low risk. In our laboratory, we
developed a new culture method that greatly acceler-
ates the growth rate and prolongs the life span of
human adipose-derived MSCs (hAD-MSCs) using
a growth medium with low calcium and supple-
mented with the antioxidants N-acetyl-L-cysteine and
L-ascorbic acid [6]. Furthermore, hAD-MSCs isolated
using this newly developed method from abdominal
subcutaneous adipose tissue were used successfully
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to regenerate in vivo new adipose tissue of predefined
shape and three-dimensions on scaffolding made with
three commonly used biomaterials [11].
Genome-wide mRNA expression profiling has re-
cently been used to identify the core features of several
MSCs and the signature genes of each group of MSCs
derived from different origins [12-14]. MicroRNAs
(miRNAs) that are single-stranded non-coding RNAs
of approximately 22 nucleotides have been identified
in various organisms, including mammals. Mamma-
lian genomes encode many hundreds of miRNAs,
which are predicted to regulate negatively expression
of as many as 30% of protein-coding genes [15-17].
Although the biological functions of most miRNAs
are unclear, some miRNAs appear to participate in
controlling cell proliferation, differentiation, and apop-
tosis in animals [18,19]. Thus miRNAs may play key
roles in self-renewal and differentiation of MSCs.
Tissue engineering using hAD-MSCs derived from
abdominal adipose tissue may be a promising method
to generate new tissues for tissue restorations such as
breast reconstruction and facial rejuvenation. There-
fore, it important to compare the molecular charac-
teristics of hAD-MSCs derived from breast, face, and
abdominal adipose tissues. In this investigation, the
expression profiles of both mRNAs and miRNAs from
the same RN A samples of hAD-MSCs newly isolated
from breast and face adipose tissues (designated as
BM19 and FM30) were compared with those of previ-
ously reported hAD-MSC3 derived from abdominal
adipose tissue (designated as AM3) [20] to understand
the genetic bases for their similarities and differences.

METHODS

Cell culture

Human hAD-MSCs BM19 and FM30 were newly iso-
lated from breast and face adipose tissues, respec-
tively, as previously described [8,11,20]. The patients
gave informed consent and Institutional Review
Board approval was obtained by Kaohsiung Medical
University Hospital. These hAD-MSC cells were cul-
tured in K-NAC medium that is a modified MCDB
153 medium (Keratinocyte-SFM; GIBCO-Invitrogen
Corp., Carlsbad, CA, USA) supplemented with 2mM
N-acetyl-L-cysteine (A8199; Sigma, St. Louis, MO,
USA) and 0.2 mM L-ascorbic acid 2-phosphate (A8960;
Sigma).
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Profiling of mRNAs

Total RNAs from BM19 and FM30 cells were extracted
using TRIZOL reagent (Invitrogen), and the same total
RNAs from each sample were used for both mRNA
microarray analysis and miRNA quantitation. The
mRNA profiling of duplicate samples was analyzed
using Affymetrix Human Genome U133 plus 2.0
GeneChip® according to the manufacturer’s proto-
cols (Santa Clara, CA, USA) and the Microarray Core
Facility of National Research Program for Genomic
Medicine of the National Science Council in Taiwan.
This Affymetrix GeneChip® contains 54,675 probe sets
to analyze the expression level of 47,400 transcripts
and variants, including 38,500 well-characterized hu-
man genes. GeneChips from the hybridization experi-
ments were read by the Affymetrix GeneChip® scanner
3000. The original data were processed using the GC-
RMA algorithm and GeneSpring GX software ver-
sion 7.3.1 (Silicon Genetics, Redwood City, CA, USA).
The Affymetrix GeneChip® expression analysis can
be used as a stand-alone quantitative comparison as
the correlation between Affymetrix GeneChip® results
and TagMan real-time polymerase chain reaction
(PCR) results show good linearity of R>=0.95 by the
MicroArray Quality Control Study—a collaborative
effort of 137 scientists led by the US Food and Drug
Administration [21,22]. The mRNAs of BM19, FM30,
and AM3 [8,11,20] cells were also analyzed for net-
work and signaling pathways using MetaCore ana-
lytical suite (GeneGo Inc., St Joseph, MI, USA). The
MetaCore includes a curated database of human pro-
tein interaction and metabolism, and thus it is useful
for analyzing a cluster of genes in the context of regu-
latory network and signaling pathways.

Profiling of miRNAs

The expression levels of 250 human miRNAs were de-
termined using the TagMan MicroRNA Assay (Applied
Biosystems, Foster City, CA, USA) as described pre-
viously [20,23-25]. In brief, TagMan MicroRNA Assays
include two steps: stem loop reverse transcription
(RT) followed by real-time quantitative PCR. (90ng/
Rx with 24-multiplex primers) Each 10 uL RT reaction
that includes 90ng total RNA, 50nM stem-loop RT pri-
mers, 1 x RT buffer, 1.25mM each of dANTPs, 0.25U/ul
RNase inhibitor, and 10U/ul MultiScribe Reverse
Transcriptase was incubated in a PTC-225 Peltier
Thermal Cycler (M] Research, Watertown, MA, USA)
for 30 minutes each at 16°C and at 42°C, followed by
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5 minutes at 85°C, and then maintained at 4°C. RT
products were diluted 20 times with dH2O prior to
setting up the PCR reaction. Real-time PCR for each
miRNA was carried out in triplicate, and each 10uL
reaction mixture included 2 uL of diluted RT product,
5uL of 2xTagMan Universal PCR Master Mix and
0.2uM TagMan probe. The reaction was incubated in
an Applied Biosystems 7900HT Sequence Detection
System at 95°C for 10 minutes, followed by 40 cycles
of 95°C for 15 seconds and 60°C for 1 minute. The
threshold cycle (Ct) is defined as the fraction cycle
number at which the fluorescence exceeds the fixed
threshold of 0.2. Total RNA input was normalized
based on the Ct values of the TagMan U6 snRNA assay
as an endogenous control. The fold change was cal-
culated as 272¢*x K, where ACt=[Ctnirna —Ct Ubgrrnal
and K is a constant.

Target identification of miRNAs

The potential target genes of miRNAs were predicted
using the TargetCombo open source software [26]
which predicts targets by the union of miRanda [27],
PicTar [28], and TargetScanS [29] with a cutoff p value
<0.05 [30]. The impact of miRNAs on protein output
recently showed that although some targets are re-
pressed without detectable changes in mRNA levels,
those translationally repressed by more than a third
also display detectable mRNA destabilization, and
for the more highly repressed targets, mRNA desta-
bilization usually comprises the major component
of repression [17]. Therefore, comparative profiling of
miRNAs and mRNAs from the same samples of dif-
ferent cell types may identify the putative targets of
miRNAs [20,25]. The expression levels of the predicted
target mRNAs were analyzed by the Volcano plot
using a parametric test and Benjamini-Hochberg false
discovery rate for multiple testing corrections. The dif-
ferentially expressed mRNAs were defined by fold-
changes of more than three and a p value cutoff of 0.05.
Thus the miRNA targets were identified by inverse
relationships between expression levels of miRNAs
and their target mRNAs in AM3 and FM30 cells.

RESULTS
Expression profiling of mRNAs

The genome-wide mRNA expression profiles of human
breast BM19 and face FM30 cells were determined
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using the Affymetrix human genome U133 plus 2.0
GeneChip. The mRNA expression of BM19 and FM30
cells was compared with that of abdominal AM3 cells
[20] and a very similar pattern was found, with a
Pearson correlation R? values of 0.938 and 0.920,
respectively (Figures 1A and 1B).

When compared with AM3 cells, there were 79
genes in BM19 cells and 112 genes in FM30 cells,
which are abundantly (>20-fold of the overall mean)
differentially (>3-fold) expressed, found to be upreg-
ulated (Supplementary Tables S1 and S2). These genes
included several chemokine ligands and interleukins.
Conversely, there are 44 upregulated genes in AM3
when compared with BM19 cells and 54 upregulated
genes in AM3, including matrix metallopeptidase 1,
when compared with FM30 cell (Supplementary
Tables S3 and S4).

Using MetaCore analytical suite, the 1,038 gene
probes commonly expressed among AM3, BM19, and
FM30 cells were found to be involved in regulating six
cell adhesion processes and three cytoskeleton remod-
eling processes among the top ten GeneGo canonical
pathway maps (Figure 2).

Expression profiling of miRNAs

The expression profiles of 250 human miRNAs in
BM19 and FM30 cells were quantitated using TagMan
MicroRNA Assays as described previously [20,23-25],
and the expression level of each miRNA was indi-
cated as fold change over U6 snRNA. The mean ex-
pression levels of triplicate analyses for 250 miRNAs
from BM19 and FM30 cells were compared with that
of AM3 cells [20] as shown in scatter plots (Figures
1C and 1D). A very close correlation (R2=0.998) was
found between BM19 and AM3 cells, while a much
lower correlation (R?>=0.724) was obtained between
FM30 and AM3 cells. The mean expression levels of
250 miRNAs from BM19, FM30, and AM3 cells [20]
are given in Supplementary Table S5. We found that
AM3, BM19, and FM30 cells expressed extremely low
levels of the embryonic stem cell- and tissue- (liver,
heart, muscle, pancreas, placenta and testis) specific
miRNAs. The levels of the 39 most abundantly (>20-
fold U6 snRNA) expressed miRNAs in AM3 cells
were compared with the corresponding values in
BM19 and FEM30 cells (Table 1). The 39 most abun-
dantly expressed miRNAs in AM3 cells were found
to be expressed at very similar levels (<6-fold differ-
ence for only miR-199a, miR146b, and let-7i) in BM19
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Figure 1. Scatter plots and correlation analyses of mRNAs and microRNAs among AM3, BM19, and FM30 cells. The average
mRNA expression levels of duplicate samples from (A) BM19 and AM3 cells and (B) FM30 and AM3 cells. The expression levels of
more or less than three-fold are indicated by lines of 3x. The Pearson correlation of mRNA expression levels between AM3 and BM19
cells was found to be R>=0.938, and that of AM3 and FM30 cells was R*=0.920. The microRNA expression levels from (C) BM19
and AM3 cells; and (D) FM30 and AM3 cells. The Pearson correlation of microRNA expression levels between AM3 and BM19 cells
was found to be R?=0.998, and that of AM3 and FM30 cells was R?=0.724.

cells. However, seven extremely abundantly expressed
miRNAs (miR-19b, miR-320, miR-186, miR-199a, miR-
339, miR-99a, and miR-152) in AM3 cells were ex-
pressed at much lower levels (down-regulated more
than 800-fold) than that in FM30 cells, while miR-222
and miR-146a were up-regulated more than 400-fold
and 10-fold, respectively, in FM30 cells compared with
AM3 cells.

Target identification of miRNAs

The targets of seven highly downregulated miRNAs
(miR-19b, miR-320, miR-186, miR-199a, miR-339,
miR-99a, and miR-152) in FM30 cells compared with
AMS3 cells were identified by inverse relationships
between expression levels of miRNAs and their tar-
get mRNAs in AM3 and FM30 cells (Table 2). Thirty-
eight target genes were found to be upregulated more
than three-fold by the six downregulated miRNAs
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(except miR-99a) in FM30 cells compared with AM3
cells. Of these 38 genes, 11 genes (EREG, PAPPA,
STC1, DLX1, PCDHY, LIF, PAX3, MYO16, TNFSF11,
EYA4, and BEX1) were abundantly expressed in FM30
cells.

DI1SCUSSION

In this study, we found that the expression profiles of
mRNAs from breast BM19 and face FM30 cells were
very similar to that of abdominal AM3 cells. The 1,038
abundantly expressed genes among AM3, BM19, and
FM30 cells indicate that six of the top 10 network and
signaling pathways are involved in cell adhesion
processes. These results are in agreement with previ-
ous reports that the core signature transcriptomes of
human MSCs isolated from bone marrow, cord blood,
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Figure 2. Comparison of gene expression and GeneGo canonical pathway maps among AM3, BM19, and FM30 cells. (A) The param-
eters for comparison are set at a threshold of 3 with a p value of 0.05. The common genes are indicated by light grey bars. The “similar”
genes that are common between any two of three cells are indicated by a white blank. The unique genes are marked (AM3, black/white
strips; BM19, grey; and FM30, black). (B) The top 10 common GeneGo canonical pathway maps among AM3, BM19, and FM30 cells.
The degree of “relevance” to different GeneGo ontology categories is defined by the p value, so that the lower random p value gets

higher priority.

amniotic fluid, and amniotic membranes include genes
involved in the regulation of the extracellular matrix
and adhesion [14,31].

Human miRNA changes during MSC differen-
tiation have recently been studied, and 27 miRNAs
were identified as being regulated during differentia-
tion into adipocytes, osteocytes, or chondrocytes [32].

Kaohsiung J Med Sci March 2010 ¢ Vol 26 « No 3

We found that the miRNA expression profile of
BM19 cells was extremely similar to that of AM3
cells, but the miRNA expression profile of FM30 cells
was less similar to that of AM3 cells. In FM30 cells,
seven miRNAs (miR-19b, miR-320, miR-186, miR-
199a, miR-339, miR-99a, and miR-152) were down-
regulated more than 800-fold compared with AM3
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Table 1. Expression levels of the 39 most abundantly expressed microRNAs in AM3 cells as well as the corresponding

values in BM19 and FM30 cells

miRNAs AM3 BM19 FM30 AM3/BM19 AMS3/FM30
hsa-miR-19b 433406.50 259909.60 526.67 1.67 822.92
hsa-miR-320 48901.56 18751.85 41.80 2.61 1169.99
hsa-miR-186 17453.68 6067.10 21.32 2.88 818.76
hsa-miR-199a 4943.80 873.97 0.93 5.66 5313.38
hsa-miR-24 999.06 1024.00 526.02 0.98 1.90
hsa-miR-20a 695.43 431.97 202.30 1.61 3.44
hsa-miR-31 634.22 568.77 253.20 1.12 2.50
hsa-miR-16 632.81 384.14 51.59 1.65 12.27
hsa-miR-125b 341.94 296.07 182.28 1.15 1.88
hsa-miR-221 329.37 206.58 443.83 1.59 0.74
hsa-miR-146b 275.96 43.31 29.08 6.37 9.49
hsa-miR-339 246.21 102.82 0.23 2.39 1048.29
hsa-miR-99a 188.03 234.90 0.00 0.80 40251.62
hsa-miR-92 178.21 79.23 42.22 2.25 4.22
hsa-let-7b 165.44 138.24 15.72 1.20 10.52
hsa-miR-93 145.10 156.44 53.64 0.93 2.71
hsa-miR-125a 139.38 62.44 37.84 2.23 3.68
hsa-let-7a 125.68 157.57 50.43 0.80 2.49
hsa-miR-26a 89.85 37.29 12.77 241 7.04
hsa-miR-191 86.28 62.90 25.57 1.37 3.37
hsa-miR-21 82.87 48.70 23.57 1.70 3.52
hsa-miR-146a 79.64 202.15 1037.65 0.39 0.08
hsa-miR-27a 67.42 39.53 13.36 1.71 5.05
hsa-miR-29a 60.19 79.46 27.49 0.76 2.19
hsa-miR-214 49.86 32.97 15.37 1.51 3.25
hsa-miR-30c 46.60 43.65 8.26 1.07 5.64
hsa-miR-365 41.19 40.52 14.45 1.02 2.85
hsa-miR-19a 40.72 59.63 24.99 0.68 1.63
hsa-let-7i 40.06 11.05 5.26 3.63 7.61
hsa-miR-342 30.48 31.10 9.67 0.98 3.15
hsa-miR-140 28.72 69.70 14.54 0.41 1.98
hsa-miR-152 28.21 30.30 0.00 0.93 6038.74
hsa-miR-181d 28.15 34.31 12.84 0.82 2.19
hsa-let-7g 26.81 11.83 1.70 227 15.80
hsa-miR-376a 24.45 110.51 7.40 0.22 3.30
hsa-miR-127 23.75 59.67 12.69 0.40 1.87
hsa-miR-26b 21.36 11.21 3.20 1.91 6.67
hsa-miR-106b 20.11 26.73 11.42 0.75 1.76
FM30/AM3
hsa-miR-222 2.54 5.26 1220.07 479.81
hsa-miR-146a 79.64 202.15 1037.65 13.03

cells. It is interesting that the abundant miRNAs
miR-99a and miR-152 in AM3 cells were previously
found to be almost absent in LM6 (LD-MSC6L) cells
derived from lipoma adipose tissue, and that the
highly upregulated genes HAS2, VNN1, COL11A1,
and SLC16A6 targeted by miRNAs miR-99a and/or
miR-152 may be responsible for a higher prolifera-
tion potential in LM6 cells compared with AM3 cells
[10,20].
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Thirty-eight genes targeted by these six miRNAs
(except miR-99a) were upregulated more than three-
fold in FM30 cells compared with AM3 cells, and the
most abundant epiregulin gene was found to be ex-
pressed more than 1,400 times the overall mean in
FM30 cells. These 38 highly expressed target genes
might play an important role(s) in the development of
facial tissue, and thus abdominal AM3 cells might not
be suitable for tissue engineering of facial rejuvenation.
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Conversely, autologous abdominal AM3 cells are the
most suitable for tissue restoration in breast recon-
struction, since the expression profiles of mRNAs
and miRNAs from abdominal AM3 and breast BM19
cells were found to be very similar.
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