Hippuristerones E-**I, New Polyoxygenated Steroids from the Gorgonian Coral** *Isis hippuris*

Jyh-Horng Sheu,*,† Long-Fei Huang,† Shin-Pin Chen,† Yi-Lea Yang,† Ping-Jyun Sung,† Guey-Horng Wang,†,‡ Jui-Hsin Su,† Chih-Hua Chao,† Wan-Ping Hu,§ and Jeh-Jeng Wang§

Department of Marine Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, Republic of China, Center for General Education, Hsing-Kuo University, Tainan 709, Taiwan, Republic of China, and School of Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, Republic of China

Received December 31, 2002

Five novel $(22R,23S,24S)$ -steroids, hippuristerones E-I $(1-5)$, have been isolated from the gorgonian coral *Isis hippuris.* The structures of steroids **¹**-**⁵** were deduced by extensive 1D and 2D NMR studies (1H, 13C, 1H-1H COSY, HMQC, HMBC, and NOESY experiments). The structure of **¹** was further supported by molecular mechanics calculations.

Gorgonian corals have been known to be rich sources of polyoxygenated steroids with novel structures that exhibit a variety of biological activities.¹ As part of our ongoing study on chemical constituents of the Taiwanese gorgonian and soft corals,2 the gorgonian coral *Isis hippuris* L. (phylum Cnidaria, order Gorgonacea, family Isididae),3 which is a major inhabitant in Taiwanese tropical waters, has been the subject of an investigation. Previous studies on *I. hippuris* have resulted in the isolation of a series of novel metabolites including several highly oxygenated spiroketal steroids⁴⁻⁸ and polyoxygenated gorgosteroids, 9,10 a (22*R*,23*S*,24*S*)-polyoxygenated steroid, hippuristerone A,¹¹ and six suberosane-type cytotoxic sesquiterpenes.¹² A study on an Indonesian gorgonian *I. hippuris* also has led to the discovery of a series of polyoxygenated steroids, including hippuristerones $B-D¹³$ Our present study on the constituents of this gorgorian coral has resulted in the isolation of five novel (22*R*,23*S*,24*S*)-steroids, hippuristerones $E-I$ ($1-5$). The structures, including the relative configurations of the new metabolites **¹**-**5**, were elucidated by extensive spectral analysis, and the structure of **1** was further confirmed by molecular dynamics calculations.

Results and Discussion

The gorgonian coral *I. hippuris* was frozen immediately after collection and subsequently freeze-dried. The freezedried organism was extracted successively with *n*-hexane and CH_2Cl_2 to afford a crude extract. The crude extract was purified by extensive column chromatography on silica gel and afforded the new steroids **¹**-**5**.

Hippuristerone E (**1**) was obtained as a white powder. The HRFABMS of **1** established a molecular formula of $C_{33}H_{52}O_7$, implying eight degrees of unsaturation. The IR spectrum of 1 showed the presence of hydroxy (v_{max} 3380) cm⁻¹) and carbonyl (v_{max} 1720, 1717 cm⁻¹) groups in the molecule of **1**. Its 13C NMR spectrum showed signals of nine methyl, eight methylene, eight methine, and eight quaternary carbons, including those of two ketones (*δ* 218.8, s; 211.8, s), two ester carbonyls (*δ* 171.4, s; 170.3, s), and three oxygenated sp3 carbons (*δ* 85.7, s; 81.1, d; 77.1, s) (Table 2). By comparison of the above data with those of hippuris-

 $\frac{28}{\Xi}$ QAc $\frac{21}{10}$ HO 27 $H_{\ell_{\ell}}$ $\frac{1}{2}$ OAc $\frac{1}{11}$ $\frac{1}{H}$ $\mathbf{1}$ QAc ţ u_{θ_0} R ΟR Ê Н $\frac{1}{\overline{H}}$ $\bar{\bar{\bar{\mathrm{H}}}}$ 륦 2 : R^1 = OAc, R^2 = OH, R^3 = H $3:R^1 = OAc$, $R^2 = OH$, $R^3 = Ac$ $4: R^1 = H$, $R^2 = OH$, $R^3 = H$ $5: R^1, R^2, R^3 = H$ 6 : $R^1 = H$, $R^2 = OH$, $R^3 = Ac$

terone A (6) ,¹¹ it was found that **1** is a steroid with a structure related to that of **6**. In the 1H NMR of **1** (Table 1), the doublets at δ 0.85 (3H, d, $J = 7.0$ Hz) and 0.88 ppm (3H, d, $J = 7.0$ Hz) were attributed to H_3 -28 and H_3 -29. Furthermore, five singlets appearing at *δ* 1.45 (3H), 1.43 (3H), 1.27 (3H), 1.04 (3H), and 1.00 ppm (3H) were due to the resonances of H_3-26 , H_3-27 , H_3-21 , H_3-19 , and H_3-18 , respectively. Two signals that appeared at δ 2.12 (3H, s) and d 1.96 ppm (3H, s) revealed the presence of two acetoxy groups. From the ${}^{1}H-{}^{1}H$ COSY spectrum of 1 (Figure 1), it was possible to establish the proton sequences from H_2-1 to H₂-2; H₂-4 to H-9; H-8 to H-14; H-9 to H₂-11; H₂-11 to H_2-12 ; H-14 to H_2-15 ; H-22 to H-24; H-23 to H_3-29 ; and H-24 to H_3 -28. The ring-junctured C-18 and C-19 methyl groups were positioned at C-10 and C-13, respectively, from the key HMBC correlations of H_3 -19 with C-1, C-5, C-9, and C-10, and H_3 -18 with C-12, C-13, C-14, and C-17,

10.1021/np020602r CCC: \$25.00 © 2003 American Chemical Society and American Society of Pharmacognosy Published on Web 05/15/2003

^{*} To whom correspondence should be addressed. Tel: 886-7-5252000, ext. 5030. Fax: 886-7-5255020. E-mail: sheu@mail.nsysu.edu.tw.

[†] National Sun Yat-Sen University.

[‡] Hsing-Kuo University.

[§] Kaohsiung Medical University.

a Spectra recorded at 400 MHz in CDCl₃ at 25 °C. *b* Spectra recorded at 500 MHz in CDCl₃ at 25 °C. *c* Spectra recorded at 300 MHz in CDCl3 at 25 °C. *^d J* values (in Hz) in parentheses. The values are ppm downfield from TMS.

Figure 1. Selective HMBC and 1H-1H COSY correlations of **¹**.

observed in an HMBC experiment (Figure 1). The ¹³C NMR signals at δ 171.4 (s) and 170.3 ppm (s) correlated with the signals of the methyl protons at *δ* 2.12 (3H, s) and 1.96 ppm (3H, s) in the HMBC spectrum of **1** (Figure 1) and were consequently assigned as the carbon atoms of the two acetate carbonyls. The HMBC experiment of **1** further revealed the connectivity between H-22 (δ 5.36, 1H, d, $J =$ 2.8 Hz) and the carbonyl carbon (*δ* 171.4, s) of an acetate unit and demonstrated the location of an acetoxy group to be at C-22. On the basis of the consideration of the molecular formula and by comparison of the NMR spectral data with **6**, the second acetoxy group should be attached at C-25 and one hydroxy group had to be placed at C-20. The two ketone groups at C-3 and C-16 were confirmed by their HMBC correlations with H_2 -2 and H_2 -4, and H_2 -15

and H-17, respectively. The above observations and several other 1H-1H COSY and HMBC correlations (Table 3 and Figure 1) thus provided unambiguous evidence for the molecular framework of **1**.

The relative stereochemistry of **1** was deduced using a NOESY experiment (Table 3). In the NOESY spectrum of **1**, H_3 -21 did not give correlation with H_3 -18, and H_3 -17 was found to exhibit correlations with H_3 -21 and H-14. Thus, H-14, H-17, and H₃-21 should be placed on the α -face, since the C-18 methyl is the β -substituent at C-13, and the hydroxy group at C-20 should be *â*-oriented. Furthermore, H-8 exhibited NOE correlations with H_3 -18 and H_3 -19, but not with H-9 and H-14, indicating that H_3 -19 and H-8 are situated on the β -face, and H-9 is situated on the α -face. Also, H-5 was found to exhibit correlations with H-9, but not with H₃-19, indicating that H-5 was α -oriented in **1**. The relative stereochemistry of the side chain of **1** is also determined by a NOESY experiment (Table 3). H-17 was found to show NOE correlations with H-22, H-23, and H-24. By detailed consideration of molecular models, it was suggested that the side chain substituents of **1** should possess orientations of C-22 α , C-23 α , and C-24 α . Thus, hippuristerone E (**1**) is considered to be a novel 20 hydroxysteroid possessing a (22*R*,23*S*,24*S*)-23,24-dimethyl-22,25-diacetoxy side chain subunit.

Geometry optimization was performed using DISCOVER utilizing the CVFF (consistent valence force field) calculations for energy minimization. The results were visualized using INSIGHT II running on a Silicon Graphics IRIS

Table 2. 13C NMR Chemical Shifts for Steroids **¹**-**⁵**

carbon	1 _a	2 ^b	3 ^c	4c	5 ^c
1	38.1t	38.3t	38.4t	38.4t	38.5t
$\boldsymbol{2}$	38.0 t	38.0 t	38.1t	38.1t	38.2t
3	211.8 s	211.6s	211.6s	211.8 s	211.9 s
4	44.5t	44.5 t	44.6 t	44.6 t	44.7 t
$\overline{5}$	46.5d	46.5 d	46.6 d	46.6d	46.6d
6	28.6t	28.5t	28.7t	28.7t	28.8t
7	31.5t	31.6t	31.7t	31.6 t	31.5t
8	33.8 d	34.4 d	34.5 d	34.7 d	35.6 d
9	53.4 d	53.8 d	53.3 d	53.7 d	53.6 d
10	35.7 s	35.7 s	35.7 s	35.7 s	35.7 s
11	20.9 _t	21.5t	21.6t	21.4t	21.6t
12	39.3t	32.4t	33.5t	36.7t	36.5t
13	43.6 s	45.6 s	45.6 s	43.1 s	43.8 s
14	50.9 d	49.3 d	48.2 d	49.3 d	54.9 d
15	38.8 t	33.4 t	32.0 t	33.4 t	23.6t
16	218.8 s	70.1 _d	70.2 _d	70.2 d	30.9t
17	67.4 d	77.3 s	77.8 s	79.2 s	79.1 s
18	14.4q	63.4 t	63.5 t	15.6q	15.4t
19	11.4q	11.4q	11.5q	11.4q	11.5q
20	77.1 s	66.8s	66.5 s	67.8 s	67.3 s
21	20.6q	16.2q	16.3q	16.5q	17.0q
22	81.1 d	77.3 d	77.2 d	77.7 d	78.5 d
23	32.3 d	33.1 d	33.8 d	33.1 d	33.4 d
24	44.5 d	41.8 d	40.0 d	41.8d	41.7 d
25	85.7 s	73.8 s	85.7 s	73.8 s	73.8 s
26	23.6q	30.8q	23.4q	30.8q	30.5q
27	25.1q	25.9q	25.2q	26.1q	26.3q
28	9.5q	11.4q	10.5q	11.5q	11.3q
29	10.7 _q	12.0q	12.0q	12.1q	11.9q
acetate	22.7q	21.2q	21.1q	21.1q	21.1q
methyls	21.1q	21.1q	21.2q		
			22.7q		
acetate	171.4 s	171.4 s	171.3 s	171.6s	170.7 s
carbonyls	170.3 s	171.3 s	171.1 s	171.1 s	171.1 s
			169.9 s	169.9 s	169.9 s

^a Spectra recorded at 100 MHz in CDCl₃ at 25 °C. ^{*b*} Spectra recorded at 125 MHz in CDCl₃ at 25 °C. ^c Spectra recorded at 75 MHz in CDCl₃ at 25 °C. ^{*d*} Multiplicity deduced by DEPT and indicated by usual symbols. The values are ppm downfield from TMS.

(SGI) INDIGO XS24-4000. The conformational search suggested the most stable conformation as shown in Figure 2. The most stable conformation revealed the presence of a hydrogen bond between the hydroxy group at C-20 and the oxygen at C-22 (the H-O distance is 2.43 Å), so that the conformation around C-20/C-22 bond is fixed, and in turn prevents the free rotation around the C-22/C-23 bond. The distance between H-17 and H-24 was found to be 4.09 Å, which could reasonably explain the NOE correlations observed between these two protons. Furthermore, the orthogonal (torsional angle around 90°) arrangement of H-22 and H-23 protons can be used to rationalize the

Figure 2. Stereoview of **1** generated from computer modeling.

presence of a very small coupling constant (2.8 Hz) between these two methine protons in the 1H NMR spectrum of **1** (Table 1). On the basis of the above results, the molecular structure of **1** was established unambiguously.

Hippuristerone F (**2**) was obtained as a white amorphous solid that gave a $[M + H]^+$ peak at m/z 577.3742 in the HRFABMS, appropriate for a molecular formula of $C_{33}H_{52}O_8$, requiring eight degrees of unsaturation. The LRFABMS showed peaks at m/z 559 [M + H – H₂O]⁺, 541 [M + H – 2 H₂O]⁺, 517 [M + H - AcOH]⁺, 457 [M + H - 2 AcO]⁺, and 421 [M + H - 2 AcOH - 2 H₂O]⁺, suggesting the presence of two hydroxy and two acetoxy groups in the molecular structure of **2**. The 13C NMR spectrum of **2** showed signals of eight methyl, nine methylene, eight methine, and eight quaternary carbons, incuding one ketone (*δ* 211.6, s), two ester carbonyls (*δ* 171.4, s; 171.3, s), six carbons bonded to an oxygen (*δ* 77.3, s; 77.3, d; 73.8, s; 70.1, d; 66.8, s; 63.4, t), and two normal quaternary carbons (*δ* 45.6; 35.7) (Table 2). It was found that the above data are very similar to the carbon shifts of hippuristerone A (**6**), indicating that the structure of **2** should be close to **6**. However, it was observed that the signal of the methyl carbon C-18 in molecules of **2** disappeared and was replaced by a signal resonating at *δ* 63.4 (t). Also, the resonance of H3-18 in **6** was replaced by signals that were downfield shifted to δ 4.31 (1H, d, $J = 11.5$ Hz) and 4.22 (1H, d, $J =$ 11.5 Hz). Thus, the methyl group attached at C-13 in **6** should be converted to an oxygen-bearing methylene group. The 13C NMR signals resonating at 171.4 and 171.3 ppm were found to be correlated with the signals of the methyl protons at δ 2.13 (3H, s) and 2.07 (3H, s) in the HMBC spectrum of **2** and consequently assigned as the carbon atoms of the two acetate carbonyls. The HMBC spectrum of **2** further revealed the connectivities between H-22 (*δ* 4.64, 1H, d, $J = 10.5$ Hz) and a carbonyl carbon (δ 171.4),

Table 3. Selective 1H-1H COSY, HMBC, and NOESY Correlations for **¹**

C/H	$H^{-1}H$ COSY	HMBC	NOESY		
3		H_2-2 , H_2-4			
16		H_2 -15, H-17			
17		H_3 -18, H_3 -21	$H-14$, H_3-21 , $H-22$, $H-23$, $H-24$		
18		H_2-12 , H-14, H-17	$H-8$		
19		H_2-2 , H-5, H-9	$H-8$		
20		$H-17$, H_3-21 , $H-22$			
21		H-17, H-22	H-17, H-22		
22	$H-23$	$H-17$, H_3-21 , $H-23$, $H-24$, H_3-29	$H-17$, H_3-21 , $H-23$, $H-24$		
23	$H-22$, $H-24$, H_3-29	$H-22$, H-24, H ₃ -28, H ₃ -29	H-17, H-22		
24	$H-23, H_3-28$	H-22, H-23, H ₃ -26, H ₃ -27, H ₃ -28, H ₃ -29	H-17, H-22		
25		$H-24$, H_3-26 , H_3-27 , H_3-28			
26		$H-24$			
27		$H-24$			
28	$H-24$	H-23, H-24			
29	$H-23$	H-22, H-23, H-24			
22-OCOMe		$H-22$			

Figure 3. Possible biosynthetic pathway of hippuristerone (**1**).

and between H₂-18 and the other carbonyl carbon (δ 171.3), demonstrating the locations of two acetoxy groups to be at C-22 and C-18. On the basis of these results, the structure of hippuristerone F was established as 25-deacetoxy-25 hydroxy-18-acetoxyhippuristerone A, as described by formula **2**.

Hippuristerone G (**3**) was obtained as a white powder. The molecular formula $C_{35}H_{54}O_9$ was established by a FAB mass spectrum, which gave a $[M + H]^+$ peak at m/z 619, and by 13C NMR spectral data, which reavealed the presence nine methyl, nine methylene, eight methine, and nine quaternary carbons, including one ketone (*δ* 211.6, s), three ester carbonyls (*δ* 171.3, s; 171.1, s; 169.9, s), six carbons attached by an oxygen (*δ* 85.7, s; 77.8, s; 77.2, d; 70.2, d; 66.5, s; 63.5, t), and two normal quaternary carbons (*δ* 45.6; 35.7). In comparison of the 13C and 1H NMR spectral data of **3** with those of **2** and **6**, the structure of hippuristerone G was established as 18-acetoxyhippuristerone A, as described by formula **3**.

Hippuristerones H (**4**) and I (**5**) had molecular formulas of $C_{31}H_{50}O_6$ and $C_{31}H_{50}O_5$, respectively, as suggested by their NMR (Tables 1 and 2) and HRFASMS data. In comparison of both 1H and 13C NMR spectral data of these two metabolites with those of hippuristerone A (**6**), it was concluded that the structures of **4** and **5** are very similar to that of **6**, except that the acetoxy group attached at C-25 of **6** was replaced by a hydroxy group in both **4** and **5**. Also, it was observed that the hydroxymethine functionality at C-16 of **4** was reduced to the corresponding methylene moiety in **5**. Thus, the structures of **4** and **5** were established unambiguously as 25-deacetoxy-25-hydroxyhippuristerone A and 16-dehydroxy-25-deacetoxy-25-hydroxylhippuristerone A, respectively.

Hippuristerone E (**1**) appeared to be biosynthesized from hippuristerone A (**6**) by a pathway as shown in Figure 3. The 17*â*,20*â*-epoxy group of **6** was ring-opened to form the intermediate **7**, which has a carbonium ion at C-17 and a *^â*-hydroxy group at C-20. The Wagner-Meerwein shift of H α -16 to the α -face of C-20 and the following deprotonation of the 16-hydroxy group converted the intermediate **7** into **1**.

Experimental Section

General Experimental Procedures. Melting points were determined using a Fisher-Johns melting point apparatus and have not been corrected. Optical rotations were measured on a Jasco DIP-1000 digital polarimeter. IR spectra were recorded on Hitachi I-2001 and Jasco FT/IR-5300 infrared spectrophotometers. The NMR spectra were recorded on FT-NMR instruments at 300, 400, or 500 MHz for 1H and 75, 100, or 125 MHz for ^{13}C , respectively, in CDCl₃ using TMS as an internal standard. Nuclear Overhauser and exchange spectroscopy (NOESY), 1H-1H correlation spectroscopy (COSY), heteronuclear multiple quantum coherence (HMQC), and 1H-detected multiple-bond heteronuclear multiple quantum coherence (HMBC) experiments were performed by using standard Bruker pulse sequences. Low-resolution mass spectra

were obtained by fast atom bombardment (FAB) on a VG Quattro GC/MS spectrometer. High-resolution mass spectra (HRMS) were recorded by fast atom bombardment on a JEOL JMX-HX 110 mass spectrometer. Silica gel 60 (Merck, 230- 400 mesh) was used for column chromatography. Precoated silica gel plates (Merck Kieselgel 60 F_{254} , 2 mm) were used for analytical TLC.

Animal Material. The gorgonian coral *I. hippuris* was collected by hand using scuba at Green Island, which is located off the southeast coast of Taiwan, in February 1999, at a depth of 25 m, and was stored in a freezer until extraction. A voucher specimen was deposited in the Department of Marine Resources, National Sun Yat-Sen University (specimen no. GISC-102).

Extraction and Isolation. The gorgonian coral (4.3 kg fresh wt) was collected and freeze-dried. The freeze-dried material was minced and extracted exhaustively with *n*hexane and CH_2Cl_2 . The combined organic extract was evaporated to give a dark green residue (37.0 g), which was chromatographed on a $SiO₂$ column using solvents of increasing polarity from *n*-hexane to EtOAc. Steroids **1** (12.9 mg) and **2** (2.7 mg) were eluted with *n*-hexane/EtOAc (3:1). Steroid **3** (6.3 mg) was obtained by elution with *n*-hexane/EtOAc (5:1). A fraction eluted with *ⁿ*-hexane/EtOAc (3:1-3:2) was further purified by SiO_2 column using acetone/CH₂Cl₂ (1:3) to afford **4** (7.9 mg). A fraction eluted with *n*-hexane/EtOAc $(4:1-3:1)$ was further purified by SiO_2 column using acetone/CH₂Cl₂ (1:3) to afford **5** (14.5 mg).

Hippuristerone E (1): white powder; mp 174–176 °C; $[\alpha]_D$ -92° (*c* 0.1, CHCl₃); IR (KBr) v_{max} 3380, 1720, and 1717 cm⁻¹; ¹H NMR and ¹³C NMR data, see Tables 1 and 2; FABMS *m*/*z* 583 [(M ⁺ Na)+, 2], 565 (0.2), 523 (1), 483 (1), 439 (1), 423 (1), 391(3), and 341 (7); HRFABMS *^m*/*^z* 583.3626 (M ⁺ Na)⁺ (calcd for C33H52O7Na, 583.3611).

Hippuristerone F (2): white powder; mp $125-127$ °C; $[\alpha]_D$ -15° (*c* 0.3, CHCl₃); IR (KBr) v_{max} 3452, 1726, and 1244 cm⁻¹; ¹H NMR and ¹³C NMR data, see Tables 1 and 2; FABMS *m*/*z* 577 [(M ⁺ H)+]; HRFABMS *^m*/*^z* 577.3742 (M + H)⁺ (calcd for $C_{33}H_{53}O_8$, 577.3726).

Hippuristerone G (3): white powder; mp 113–114 °C; $[\alpha]_D$ 23° (c 0.02, CHCl₃); IR (KBr) v_{max} 3495, 1728, and 1248 cm⁻¹; ¹H NMR and ¹³C NMR data, see Tables 1 and 2; FABMS *m*/*z* 619 $[(M + H)^+, 0.01]$, 551 (0.04), 499 (0.01), 481 (0.01), 439 (0.02), and 421 (0.02); HRFABMS *^m*/*^z* 641.3666 (M + Na)⁺ (calcd for $C_{35}H_{54}O_9Na$, 641.3667).

Hippuristerone H (4): white powder; mp $122-124$ °C; $[\alpha]_D$ 9° (*^c* 0.31, CHCl3); IR (KBr) *^v*max 3493, 1726, and 1711 cm-1; 1H NMR and 13C NMR data, see Tables 1 and 2; FABMS *^m*/*^z* 541 [(M ⁺ Na)+]; HRFABMS *^m*/*^z* 519.3682 (M + H)⁺ (calcd for C31H51O6, 519.3672).

Hippuristerone I (5): white powder; mp 120–122 °C; $[\alpha]_D$ 12° (*c* 0.36, CHCl₃); IR (KBr) v_{max} 1730, 1709, and 1246 cm⁻¹; ¹H NMR and ¹³C NMR data, see Tables 1 and 2; FABMS *m*/*z* 525 [(M ⁺ Na)+]; HRFABMS *^m*/*^z* 503.3734 (M + H)⁺ (calcd for $C_{31}H_{51}O_5$, 503.3723).

Molecular Mechanics Calculations. The minimum energy conformation of hippuristerone E (**1**) was determined using the MSI Insight II/DISCOVER version 95 molecular modeling package incorporating an empirical force field, the consistent valence force field (CVFF),¹⁴ on a Silicon Graphics IRIS Indigo XS24/R4000 workstation. All the force field calculations were carried out in vacuo (dielectric constant $=$ 1). The conformational space of steroid **1** was scanned using the high-temperature molecular dynamics simulation technique followed by energy minimization. A 100 ps molecular dynamics simulation at 1000 K provided a set of 500 conformations of **1**. Each of them was used as a starting structure for the subsequent energy minimization (1000 steps, conjugated gradient algorithm). In the subsequent analysis, only the 15 conformations with a reasonably low energy (at most 5 kcal/mol higher with respect to the lowest energy conformer) were used. The conformer shown in Figure 2 is the lowest energy conformation of steroid **1**.

Acknowledgment. This work was supported by a grant from the National Science Council of the Republic of China (Contract No. NSC-89-2113-M-110-025) awarded to J.-H.S.

References and Notes

- (1) Faulkner, D. J. *Nat. Prod. Rep*. **²⁰⁰¹**, *¹⁸*, 1-49, and previous reports in this series
- (2) Wang, G.-H.; Sheu, J.-H.; Duh, C.-Y.; Chiang, M. Y.*J. Nat. Prod.* **2002**, *⁶⁵*, 1475-1478, and references therein.
- (3) Bayer, F. M. *Proc. Biol. Soc. Wash.* **1981**, *94*, 902–947.

(4) Kazlauskas, R.; Murphy, P. T.; Quinn, R. J.; Wells, R. J.; Schönholzer,

P. *Tetrahedron Lett.* **1977**, 4439–4442.

(5) Higa, T.; Tanaka, J.; Tsukitani
-
- (6) Higa, T.; Tanaka, J.; Tachibana, K. *Tetrahedron Lett.* **¹⁹⁸¹**, *²²*, 2777- 2780.
- (7) Rao, C. B.; Ramana, K. V.; Rao, D. V.; Fahy, E.; Faulkner, D. J. *J. Nat. Prod.* **¹⁹⁸⁸**, *⁵¹*, 954-958.
- (8) Tanaka, J.; Trianto, A.; Musman, M.; Issa, H. H.; Ohtani, I. I.; Ichiba, T.; Higa, T.; Yoshida, W. Y.; Scheuer, P. J. *Tetrahedron* **2002**, *58*, ⁶²⁵⁹-6266.
- (9) Tanaka, J.; Higa, T.; Tachibana, K.; Iwashita, T. C*hem. Lett.* **1982**, ¹²⁹⁵-1296.
- (10) Shen, Y.-C.; Prakash, C. V. S.; Chang, Y.-T. *Steroids* **²⁰⁰¹**, *⁶⁶*, 721- 725.
- (11) Sheu, J.-H.; Chen, S.-P.; Sung, P.-J.; Chiang, M. Y.; Dai, C.-F. *Tetrahedron Lett.* **²⁰⁰⁰**, *⁴¹*, 7885-7888.
- (12) Sheu, J.-H.; Hung, K.-C.; Wang, G.-H.; Duh, C.-Y. *J. Nat. Prod*. **2000**, *63*, 1603–1607.

(13) González, N.; Barral, M. A.; Rodríguez, J.; Jiménez, C. *Tetrahedron*
- **²⁰⁰¹**, *⁵⁷*, 3487-3497. (14) MSI Insight II/DISCOVER (version 95.0/2.97) is a molecular modeling
- software package of MSI Technologies Inc., Barnes Canyon Rd., San Diego, CA 92121.

NP020602R