Hippuristerones E–I, New Polyoxygenated Steroids from the Gorgonian Coral *Isis hippuris*

Jyh-Horng Sheu,^{*,†} Long-Fei Huang,[†] Shin-Pin Chen,[†] Yi-Lea Yang,[†] Ping-Jyun Sung,[†] Guey-Horng Wang,^{†,‡} Jui-Hsin Su,[†] Chih-Hua Chao,[†] Wan-Ping Hu,[§] and Jeh-Jeng Wang[§]

Department of Marine Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, Republic of China, Center for General Education, Hsing-Kuo University, Tainan 709, Taiwan, Republic of China, and School of Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, Republic of China

Received December 31, 2002

Five novel (22*R*,23*S*,24*S*)-steroids, hippuristerones E-I (1–5), have been isolated from the gorgonian coral *Isis hippuris*. The structures of steroids 1–5 were deduced by extensive 1D and 2D NMR studies (¹H, ¹³C, ¹H–¹H COSY, HMQC, HMBC, and NOESY experiments). The structure of 1 was further supported by molecular mechanics calculations.

Gorgonian corals have been known to be rich sources of polyoxygenated steroids with novel structures that exhibit a variety of biological activities.¹ As part of our ongoing study on chemical constituents of the Taiwanese gorgonian and soft corals,² the gorgonian coral Isis hippuris L. (phylum Cnidaria, order Gorgonacea, family Isididae),³ which is a major inhabitant in Taiwanese tropical waters, has been the subject of an investigation. Previous studies on *I. hippuris* have resulted in the isolation of a series of novel metabolites including several highly oxygenated spiroketal steroids⁴⁻⁸ and polyoxygenated gorgosteroids,^{9,10} a (22*R*,23*S*,24*S*)-polyoxygenated steroid, hippuristerone A,¹¹ and six suberosane-type cytotoxic sesquiterpenes.¹² A study on an Indonesian gorgonian I. hippuris also has led to the discovery of a series of polyoxygenated steroids, including hippuristerones B–D.¹³ Our present study on the constituents of this gorgorian coral has resulted in the isolation of five novel (22R,23S,24S)-steroids, hippuristerones E–I (1–5). The structures, including the relative configurations of the new metabolites 1-5, were elucidated by extensive spectral analysis, and the structure of 1 was further confirmed by molecular dynamics calculations.

Results and Discussion

The gorgonian coral *I. hippuris* was frozen immediately after collection and subsequently freeze-dried. The freeze-dried organism was extracted successively with *n*-hexane and CH_2Cl_2 to afford a crude extract. The crude extract was purified by extensive column chromatography on silica gel and afforded the new steroids **1**–**5**.

Hippuristerone E (1) was obtained as a white powder. The HRFABMS of 1 established a molecular formula of $C_{33}H_{52}O_7$, implying eight degrees of unsaturation. The IR spectrum of 1 showed the presence of hydroxy (v_{max} 3380 cm⁻¹) and carbonyl (v_{max} 1720, 1717 cm⁻¹) groups in the molecule of 1. Its ¹³C NMR spectrum showed signals of nine methyl, eight methylene, eight methine, and eight quaternary carbons, including those of two ketones (δ 218.8, s; 211.8, s), two ester carbonyls (δ 171.4, s; 170.3, s), and three oxygenated sp³ carbons (δ 85.7, s; 81.1, d; 77.1, s) (Table 2). By comparison of the above data with those of hippuris-

28 OAc HO 11 27 ≣ 29 OAc Ē $\bar{\bar{\mathrm{H}}}$ 1 <u>O</u>Ac Ī 1111, R OR Ē Ē Ē Ē $2: R^1 = OAc, R^2 = OH, R^3 = H$ $\mathbf{3}: \mathbf{R}^1 = \mathbf{OAc}, \ \mathbf{R}^2 = \mathbf{OH}, \ \mathbf{R}^3 = \mathbf{Ac}$ $4: R^1 = H$, $R^2 = OH$, $R^3 = H$ $5: R^1, R^2, R^3 = H$ $6: R^1 = H$, $R^2 = OH$, $R^3 = Ac$

terone A (6),¹¹ it was found that 1 is a steroid with a structure related to that of 6. In the ¹H NMR of 1 (Table 1), the doublets at δ 0.85 (3H, d, J = 7.0 Hz) and 0.88 ppm (3H, d, J = 7.0 Hz) were attributed to H₃-28 and H₃-29. Furthermore, five singlets appearing at δ 1.45 (3H), 1.43 (3H), 1.27 (3H), 1.04 (3H), and 1.00 ppm (3H) were due to the resonances of H₃-26, H₃-27, H₃-21, H₃-19, and H₃-18, respectively. Two signals that appeared at δ 2.12 (3H, s) and d 1.96 ppm (3H, s) revealed the presence of two acetoxy groups. From the ${}^{1}H-{}^{1}H$ COSY spectrum of **1** (Figure 1), it was possible to establish the proton sequences from H₂-1 to H₂-2; H₂-4 to H-9; H-8 to H-14; H-9 to H₂-11; H₂-11 to H₂-12; H-14 to H₂-15; H-22 to H-24; H-23 to H₃-29; and H-24 to H₃-28. The ring-junctured C-18 and C-19 methyl groups were positioned at C-10 and C-13, respectively, from the key HMBC correlations of H₃-19 with C-1, C-5, C-9, and C-10, and H₃-18 with C-12, C-13, C-14, and C-17,

10.1021/np020602r CCC: \$25.00 © 2003 American Chemical Society and American Society of Pharmacognosy Published on Web 05/15/2003

^{*} To whom correspondence should be addressed. Tel: 886-7-5252000, ext. 5030. Fax: 886-7-5255020. E-mail: sheu@mail.nsysu.edu.tw.

[†]National Sun Yat-Sen University.

[‡] Hsing-Kuo University

[§] Kaohsiung Medical University.

proton	1 ^a	2^{b}	3 ^c	4 <i>c</i>	5 ^c
1	2.02 m;	1.99 m;	2.00 m;	2.05 m;	2.04 m;
	1.33 m	1.34 m	1.40 m	1.33 m	1.62 m
2	2.40 m;	2.30 m;	2.38 m	2.30 m	2.32 m
	2.22 m	2.38 m			
4	2.28 m;	2.27 m;	2.30 m;	2.27 m;	2.27 m;
	2.11 m	2.11 m	2.10 m	2.10 m	2.09 m
5	1.54 m	1.56 m	1.56 m	1.56 m	1.54 m
6	1.38 m	1.40 m	1.40 m	1.40 m	1.37 m
7	1.65 m;	1.81 m;	1.80 m;	1.82 m;	1.78 m;
	1.02 m	0.91 m	0.92 m	0.92 m	0.92 m
8	1.60 m	1.71 m	1.76 m	1.56 m	1.49 m
9	0.93 m	0.78 m	0.89 m	0.70 m	0.75 m
11	1.60 m;	1.65 m	1.52 m;	1.60 m;	1.59 m;
	1.48 m		1.34 m	1.48 m	1.37 m
12	2.26 m;	2.17 m;	2.15 m;	1.82 m;	1.88 m;
	1.49 m	1.37 m	1.40 m	1.48 m	1.46 m
14	1.45 m	1.22 m	1.42 m	1.06 m	1.29 m
15	2.28 m;	2.22 m	2.28 m;	2.20 m;	1.64 m;
	1.90 m		1.45 m	1.45 m	1.40 m
16		4.09 t (7.0)	4.05 t (6.9)	4.06 t (7.2)	2.08 m;
					1.91 m
17	2.20 s				
18	1.00 s	4.31 d (11.5);	4.31 d (11.4);	0.95 s	0.92 s
		4.22 d (11.5)	4.21 d (11.4)		
19	1.04 s	1.03 s	1.02 s	1.01 s	1.00 s
21	1.27 s	1.61 s	1.59 s	1.59 s	1.55 s
22	5.36 d (2.8) ^d	4.64 d (10.5)	4.67 d (10.7)	4.62 d (10.8)	4.73 d (10.7)
23	2.22 m	1.48 m	2.30 m	2.45 m	2.33 m
24	1.92 m	1.54 m	2.05 m	1.55 m	1.59 m
26	1.45 s	1.24 s	1.56 s	1.23 s	1.28 s
27	1.43 s	1.21 s	1.42 s	1.20 s	1.20 s
28	0.85 d (7.0)	0.90 d (7.0)	0.90 d (7.4)	0.88 d (7.2)	0.91 d (7.4)
29	0.88 d (7.0)	0.86 d (7.0)	0.87 d (6.6)	0.84 d (6.9)	0.82 d (6.6)
OH-16	. ,	. ,		3.27 s	. ,
OH-20	3.49 br s				
acetate	2.12 s;	2.13 s;	2.12 s;	2.11 s;	2.08 s;
methyls	1.96 s	2.07 s	2.07 s;	,	,
J			1.98 s		

^{*a*} Spectra recorded at 400 MHz in CDCl₃ at 25 °C. ^{*b*} Spectra recorded at 500 MHz in CDCl₃ at 25 °C. ^{*c*} Spectra recorded at 300 MHz in CDCl₃ at 25 °C. ^{*d*} J values (in Hz) in parentheses. The values are ppm downfield from TMS.

Figure 1. Selective HMBC and ¹H-¹H COSY correlations of 1.

observed in an HMBC experiment (Figure 1). The ¹³C NMR signals at δ 171.4 (s) and 170.3 ppm (s) correlated with the signals of the methyl protons at δ 2.12 (3H, s) and 1.96 ppm (3H, s) in the HMBC spectrum of **1** (Figure 1) and were consequently assigned as the carbon atoms of the two acetate carbonyls. The HMBC experiment of **1** further revealed the connectivity between H-22 (δ 5.36, 1H, d, *J*= 2.8 Hz) and the carbonyl carbon (δ 171.4, s) of an acetate unit and demonstrated the location of an acetoxy group to be at C-22. On the basis of the consideration of the molecular formula and by comparison of the NMR spectral data with **6**, the second acetoxy group should be attached at C-25 and one hydroxy group had to be placed at C-20. The two ketone groups at C-3 and C-16 were confirmed by their HMBC correlations with H₂-2 and H₂-4, and H₂-15

and H-17, respectively. The above observations and several other ${}^{1}H{-}^{1}H$ COSY and HMBC correlations (Table 3 and Figure 1) thus provided unambiguous evidence for the molecular framework of **1**.

The relative stereochemistry of 1 was deduced using a NOESY experiment (Table 3). In the NOESY spectrum of 1, H₃-21 did not give correlation with H₃-18, and H-17 was found to exhibit correlations with H₃-21 and H-14. Thus, H-14, H-17, and H₃-21 should be placed on the α -face, since the C-18 methyl is the β -substituent at C-13, and the hydroxy group at C-20 should be β -oriented. Furthermore, H-8 exhibited NOE correlations with H₃-18 and H₃-19, but not with H-9 and H-14, indicating that H₃-19 and H-8 are situated on the β -face, and H-9 is situated on the α -face. Also, H-5 was found to exhibit correlations with H-9, but not with H₃-19, indicating that H-5 was α -oriented in **1**. The relative stereochemistry of the side chain of 1 is also determined by a NOESY experiment (Table 3). H-17 was found to show NOE correlations with H-22, H-23, and H-24. By detailed consideration of molecular models, it was suggested that the side chain substituents of 1 should possess orientations of C-22a, C-23a, and C-24a. Thus, hippuristerone E (1) is considered to be a novel 20hydroxysteroid possessing a (22R,23S,24S)-23,24-dimethyl-22,25-diacetoxy side chain subunit.

Geometry optimization was performed using DISCOVER utilizing the CVFF (consistent valence force field) calculations for energy minimization. The results were visualized using INSIGHT II running on a Silicon Graphics IRIS

Table 2. ¹³C NMR Chemical Shifts for Steroids 1-5

carbon	1 ^a	2 ^b	3 ^c	4 ^c	5 ^c
1	38.1 t	38.3 t	38.4 t	38.4 t	38.5 t
2	38.0 t	38.0 t	38.1 t	38.1 t	38.2 t
3	211.8 s	211.6 s	211.6 s	211.8 s	211.9 s
4	44.5 t	44.5 t	44.6 t	44.6 t	44.7 t
5	46.5 d	46.5 d	46.6 d	46.6 d	46.6 d
6	28.6 t	28.5 t	28.7 t	28.7 t	28.8 t
7	31.5 t	31.6 t	31.7 t	31.6 t	31.5 t
8	33.8 d	34.4 d	34.5 d	34.7 d	35.6 d
9	53.4 d	53.8 d	53.3 d	53.7 d	53.6 d
10	35.7 s				
11	20.9 t	21.5 t	21.6 t	21.4 t	21.6 t
12	39.3 t	32.4 t	33.5 t	36.7 t	36.5 t
13	43.6 s	45.6 s	45.6 s	43.1 s	43.8 s
14	50.9 d	49.3 d	48.2 d	49.3 d	54.9 d
15	38.8 t	33.4 t	32.0 t	33.4 t	23.6 t
16	218.8 s	70.1 d	70.2 d	70.2 d	30.9 t
17	67.4 d	77.3 s	77.8 s	79.2 s	79.1 s
18	14.4 q	63.4 t	63.5 t	15.6 q	15.4 t
19	11.4 q	11.4 q	11.5 q	11.4 q	11.5 q
20	77.1 s	66.8 s	66.5 s	67.8 s	67.3 s
21	20.6 q	16.2 q	16.3 q	16.5 q	17.0 q
22	81.1 đ	77.3 đ	77.2 đ	77.7 đ	78.5 d
23	32.3 d	33.1 d	33.8 d	33.1 d	33.4 d
24	44.5 d	41.8 d	40.0 d	41.8 d	41.7 d
25	85.7 s	73.8 s	85.7 s	73.8 s	73.8 s
26	23.6 q	30.8 q	23.4 q	30.8 q	30.5 q
27	25.1 q	25.9 q	25.2 q	26.1 q	26.3 q
28	9.5 q	11.4 q	10.5 q	11.5 q	11.3 q
29	10.7 q	12.0 q	12.0 q	12.1 q	11.9 q
acetate	22.7 q	21.2 q	21.1 q	21.1 q	21.1 q
methyls	21.1 q	21.1 q	21.2 q		
			22.7 q		
acetate	171.4 s	171.4 s	171.3 s	171.6 s	170.7 s
carbonyls	170.3 s	171.3 s	171.1 s	171.1 s	171.1 s
			169.9 s	169.9 s	169.9 s

^{*a*} Spectra recorded at 100 MHz in CDCl₃ at 25 °C. ^{*b*} Spectra recorded at 125 MHz in CDCl₃ at 25 °C. ^{*c*} Spectra recorded at 75 MHz in CDCl₃ at 25 °C. ^{*d*} Multiplicity deduced by DEPT and indicated by usual symbols. The values are ppm downfield from TMS.

(SGI) INDIGO XS24-4000. The conformational search suggested the most stable conformation as shown in Figure 2. The most stable conformation revealed the presence of a hydrogen bond between the hydroxy group at C-20 and the oxygen at C-22 (the H–O distance is 2.43 Å), so that the conformation around C-20/C-22 bond is fixed, and in turn prevents the free rotation around the C-22/C-23 bond. The distance between H-17 and H-24 was found to be 4.09 Å, which could reasonably explain the NOE correlations observed between these two protons. Furthermore, the orthogonal (torsional angle around 90°) arrangement of H-22 and H-23 protons can be used to rationalize the

Figure 2. Stereoview of 1 generated from computer modeling.

presence of a very small coupling constant (2.8 Hz) between these two methine protons in the ¹H NMR spectrum of **1** (Table 1). On the basis of the above results, the molecular structure of **1** was established unambiguously.

Hippuristerone F (2) was obtained as a white amorphous solid that gave a $[M + H]^+$ peak at m/z 577.3742 in the HRFABMS, appropriate for a molecular formula of C₃₃H₅₂O₈, requiring eight degrees of unsaturation. The LRFABMS showed peaks at m/z 559 [M + H - H₂O]⁺, 541 [M + H - $2 H_2O]^+$, 517 [M + H - AcOH]⁺, 457 [M + H - 2 AcO]⁺, and 421 $[M + H - 2 AcOH - 2 H_2O]^+$, suggesting the presence of two hydroxy and two acetoxy groups in the molecular structure of 2. The ¹³C NMR spectrum of 2 showed signals of eight methyl, nine methylene, eight methine, and eight quaternary carbons, incuding one ketone (δ 211.6, s), two ester carbonyls (δ 171.4, s; 171.3, s), six carbons bonded to an oxygen (δ 77.3, s; 77.3, d; 73.8, s; 70.1, d; 66.8, s; 63.4, t), and two normal quaternary carbons (δ 45.6; 35.7) (Table 2). It was found that the above data are very similar to the carbon shifts of hippuristerone A (6), indicating that the structure of **2** should be close to **6**. However, it was observed that the signal of the methyl carbon C-18 in molecules of 2 disappeared and was replaced by a signal resonating at δ 63.4 (t). Also, the resonance of H₃-18 in 6 was replaced by signals that were downfield shifted to δ 4.31 (1H, d, J = 11.5 Hz) and 4.22 (1H, d, J =11.5 Hz). Thus, the methyl group attached at C-13 in 6 should be converted to an oxygen-bearing methylene group. The ¹³C NMR signals resonating at 171.4 and 171.3 ppm were found to be correlated with the signals of the methyl protons at δ 2.13 (3H, s) and 2.07 (3H, s) in the HMBC spectrum of **2** and consequently assigned as the carbon atoms of the two acetate carbonyls. The HMBC spectrum of **2** further revealed the connectivities between H-22 (δ 4.64, 1H, d, J = 10.5 Hz) and a carbonyl carbon (δ 171.4),

Table 3. Selective ¹H-¹H COSY, HMBC, and NOESY Correlations for 1

C/H ¹ H ⁻¹ H COSY		HMBC	NOESY	
3		H ₂ -2, H ₂ -4		
16		H ₂ -15, H-17		
17		H ₃ -18, H ₃ -21	H-14, H ₃ -21, H-22, H-23, H-24	
18		H ₂ -12, H-14, H-17	H-8	
19		H ₂ -2, H-5, H-9	H-8	
20		H-17, H ₃ -21, H-22		
21		H-17, H-22	H-17, H-22	
22	H-23	H-17, H ₃ -21, H-23, H-24, H ₃ -29	H-17, H ₃ -21, H-23, H-24	
23	H-22, H-24, H ₃ -29	H-22, H-24, H ₃ -28, H ₃ -29	H-17, H-22	
24	H-23, H ₃ -28	H-22, H-23, H ₃ -26, H ₃ -27, H ₃ -28, H ₃ -29	H-17, H-22	
25		H-24, H ₃ -26, H ₃ -27, H ₃ -28		
26		H-24		
27		H-24		
28	H-24	H-23, H-24		
29	H-23	H-22, H-23, H-24		
22-OCOMe		H-22		

Figure 3. Possible biosynthetic pathway of hippuristerone (1).

and between H₂-18 and the other carbonyl carbon (δ 171.3), demonstrating the locations of two acetoxy groups to be at C-22 and C-18. On the basis of these results, the structure of hippuristerone F was established as 25-deacetoxy-25-hydroxy-18-acetoxyhippuristerone A, as described by formula **2**.

Hippuristerone G (**3**) was obtained as a white powder. The molecular formula $C_{35}H_{54}O_9$ was established by a FAB mass spectrum, which gave a $[M + H]^+$ peak at m/z 619, and by ¹³C NMR spectral data, which reavealed the presence nine methyl, nine methylene, eight methine, and nine quaternary carbons, including one ketone (δ 211.6, s), three ester carbonyls (δ 171.3, s; 171.1, s; 169.9, s), six carbons attached by an oxygen (δ 85.7, s; 77.8, s; 77.2, d; 70.2, d; 66.5, s; 63.5, t), and two normal quaternary carbons (δ 45.6; 35.7). In comparison of the ¹³C and ¹H NMR spectral data of **3** with those of **2** and **6**, the structure of hippuristerone G was established as 18-acetoxyhippuristerone A, as described by formula **3**.

Hippuristerones H (4) and I (5) had molecular formulas of $C_{31}H_{50}O_6$ and $C_{31}H_{50}O_5$, respectively, as suggested by their NMR (Tables 1 and 2) and HRFASMS data. In comparison of both ¹H and ¹³C NMR spectral data of these two metabolites with those of hippuristerone A (6), it was concluded that the structures of 4 and 5 are very similar to that of 6, except that the acetoxy group attached at C-25 of 6 was replaced by a hydroxy group in both 4 and 5. Also, it was observed that the hydroxymethine functionality at C-16 of 4 was reduced to the corresponding methylene moiety in 5. Thus, the structures of 4 and 5 were established unambiguously as 25-deacetoxy-25-hydroxyhippuristerone A and 16-dehydroxy-25-hydroxylhippuristerone A, respectively.

Hippuristerone E (1) appeared to be biosynthesized from hippuristerone A (6) by a pathway as shown in Figure 3. The 17β , 20β -epoxy group of **6** was ring-opened to form the intermediate **7**, which has a carbonium ion at C-17 and a β -hydroxy group at C-20. The Wagner–Meerwein shift of H α -16 to the α -face of C-20 and the following deprotonation of the 16-hydroxy group converted the intermediate **7** into **1**.

Experimental Section

General Experimental Procedures. Melting points were determined using a Fisher-Johns melting point apparatus and have not been corrected. Optical rotations were measured on a Jasco DIP-1000 digital polarimeter. IR spectra were recorded on Hitachi I-2001 and Jasco FT/IR-5300 infrared spectrophotometers. The NMR spectra were recorded on FT-NMR instruments at 300, 400, or 500 MHz for ¹H and 75, 100, or 125 MHz for ¹³C, respectively, in CDCl₃ using TMS as an internal standard. Nuclear Overhauser and exchange spectroscopy (NOESY), ¹H–¹H correlation spectroscopy (COSY), heteronuclear multiple quantum coherence (HMQC), and ¹H-detected multiple-bond heteronuclear multiple quantum coherence (HMBC) experiments were performed by using standard Bruker pulse sequences. Low-resolution mass spectra

were obtained by fast atom bombardment (FAB) on a VG Quattro GC/MS spectrometer. High-resolution mass spectra (HRMS) were recorded by fast atom bombardment on a JEOL JMX-HX 110 mass spectrometer. Silica gel 60 (Merck, 230–400 mesh) was used for column chromatography. Precoated silica gel plates (Merck Kieselgel 60 F_{254} , 2 mm) were used for analytical TLC.

Animal Material. The gorgonian coral *I. hippuris* was collected by hand using scuba at Green Island, which is located off the southeast coast of Taiwan, in February 1999, at a depth of 25 m, and was stored in a freezer until extraction. A voucher specimen was deposited in the Department of Marine Resources, National Sun Yat-Sen University (specimen no. GISC-102).

Extraction and Isolation. The gorgonian coral (4.3 kg fresh wt) was collected and freeze-dried. The freeze-dried material was minced and extracted exhaustively with *n*-hexane and CH_2Cl_2 . The combined organic extract was evaporated to give a dark green residue (37.0 g), which was chromatographed on a SiO₂ column using solvents of increasing polarity from *n*-hexane to EtOAc. Steroids **1** (12.9 mg) and **2** (2.7 mg) were eluted with *n*-hexane/EtOAc (3:1). Steroid **3** (6.3 mg) was obtained by elution with *n*-hexane/EtOAc (5:1). A fraction eluted with *n*-hexane/EtOAc (3:1–3:2) was further purified by SiO₂ column using acetone/CH₂Cl₂ (1:3) to afford **4** (7.9 mg). A fraction eluted with *n*-hexane/EtOAc (4:1–3:1) was further purified by SiO₂ column using acetone/CH₂Cl₂ (1:3) to afford **5** (14.5 mg).

Hippuristerone E (1): white powder; mp 174–176 °C; $[\alpha]_D$ -92° (*c* 0.1, CHCl₃); IR (KBr) v_{max} 3380, 1720, and 1717 cm⁻¹; ¹H NMR and ¹³C NMR data, see Tables 1 and 2; FABMS *m/z* 583 [(M + Na)⁺, 2], 565 (0.2), 523 (1), 483 (1), 439 (1), 423 (1), 391(3), and 341 (7); HRFABMS *m/z* 583.3626 (M + Na)⁺ (calcd for C₃₃H₅₂O₇Na, 583.3611).

Hippuristerone F (2): white powder; mp 125–127 °C; $[\alpha]_D$ –15° (*c* 0.3, CHCl₃); IR (KBr) v_{max} 3452, 1726, and 1244 cm⁻¹; ¹H NMR and ¹³C NMR data, see Tables 1 and 2; FABMS *m*/*z* 577 [(M + H)⁺]; HRFABMS *m*/*z* 577.3742 (M + H)⁺ (calcd for C₃₃H₅₃O₈, 577.3726).

Hippuristerone G (3): white powder; mp 113–114 °C; $[\alpha]_D$ 23° (*c* 0.02, CHCl₃); IR (KBr) v_{max} 3495, 1728, and 1248 cm⁻¹; ¹H NMR and ¹³C NMR data, see Tables 1 and 2; FABMS *m*/*z* 619 [(M + H)⁺, 0.01], 551 (0.04), 499 (0.01), 481 (0.01), 439 (0.02), and 421 (0.02); HRFABMS *m*/*z* 641.3666 (M + Na)⁺ (calcd for C₃₅H₅₄O₉Na, 641.3667).

Hippuristerone H (4): white powder; mp 122–124 °C; $[\alpha]_D$ 9° (*c* 0.31, CHCl₃); IR (KBr) v_{max} 3493, 1726, and 1711 cm⁻¹; ¹H NMR and ¹³C NMR data, see Tables 1 and 2; FABMS *m*/*z* 541 [(M + Na)⁺]; HRFABMS *m*/*z* 519.3682 (M + H)⁺ (calcd for C₃₁H₅₁O₆, 519.3672).

Hippuristerone I (5): white powder; mp 120–122 °C; $[\alpha]_D$ 12° (*c* 0.36, CHCl₃); IR (KBr) v_{max} 1730, 1709, and 1246 cm⁻¹; ¹H NMR and ¹³C NMR data, see Tables 1 and 2; FABMS *m*/*z* 525 [(M + Na)⁺]; HRFABMS *m*/*z* 503.3734 (M + H)⁺ (calcd for C₃₁H₅₁O₅, 503.3723).

Molecular Mechanics Calculations. The minimum energy conformation of hippuristerone E (1) was determined using the MSI Insight II/DISCOVER version 95 molecular modeling package incorporating an empirical force field, the consistent valence force field (CVFF),¹⁴ on a Silicon Graphics IRIS Indigo XS24/R4000 workstation. All the force field calculations were carried out in vacuo (dielectric constant = 1). The conformational space of steroid 1 was scanned using the high-temperature molecular dynamics simulation technique followed by energy minimization. A 100 ps molecular dynamics simulation at 1000 K provided a set of 500 conformations of **1**. Each of them was used as a starting structure for the subsequent energy minimization (1000 steps, conjugated gradient algorithm). In the subsequent analysis, only the 15 conformations with a reasonably low energy (at most 5 kcal/mol higher with respect to the lowest energy conformer) were used. The conformer shown in Figure 2 is the lowest energy conformation of steroid 1.

Acknowledgment. This work was supported by a grant from the National Science Council of the Republic of China (Contract No. NSC-89-2113-M-110-025) awarded to J.-H.S.

References and Notes

- (1) Faulkner, D. J. Nat. Prod. Rep. 2001, 18, 1-49, and previous reports in this series.
- Wang, G.-H.; Sheu, J.-H.; Duh, C.-Y.; Chiang, M. Y.J. Nat. Prod. 2002, 65, 1475-1478, and references therein.
 Bayer, F. M. Proc. Biol. Soc. Wash. 1981, 94, 902-947.
 Kazlauskas, R.; Murphy, P. T.; Quinn, R. J.; Wells, R. J.; Schönholzer, P. Tetrahedron Lett. 1977, 4439-4442.
 Hiror T.; Tarakitazi Y.; Kilunshi H. Chem. Lett. 1981.
- (5) Higa, T.; Tanaka, J.; Tsukitani, Y.; Kikuchi, H. Chem. Lett. 1981, 1647–1650.
- (6) Higa, T.; Tanaka, J.; Tachibana, K. Tetrahedron Lett. 1981, 22, 2777-2780.
- (7) Rao, C. B.; Ramana, K. V.; Rao, D. V.; Fahy, E.; Faulkner, D. J. J. Nat. Prod. 1988, 51, 954–958.

- (8) Tanaka, J.; Trianto, A.; Musman, M.; Issa, H. H.; Ohtani, I. I.; Ichiba, T.; Higa, T.; Yoshida, W. Y.; Scheuer, P. J. Tetrahedron 2002, 58, 6259 - 6266.
- (9) Tanaka, J.; Higa, T.; Tachibana, K.; Iwashita, T. Chem. Lett. 1982, 1295-1296.
- (10) Shen, Y.-C.; Prakash, C. V. S.; Chang, Y.-T. Steroids 2001, 66, 721-725.
- (11) Sheu, J.-H.; Chen, S.-P.; Sung, P.-J.; Chiang, M. Y.; Dai, C.-F. Tetrahedron Lett. 2000, 41, 7885-7888.
- (12) Sheu, J.-H.; Hung, K.-C.; Wang, G.-H.; Duh, C.-Y. J. Nat. Prod. 2000, 63, 1603-1607.
- (13) González, N.; Barral, M. A.; Rodríguez, J.; Jiménez, C. Tetrahedron 2001, 57, 3487-3497.
- (14) MSI Insight II/DISCOVER (version 95.0/2.97) is a molecular modeling software package of MSI Technologies Inc., Barnes Canyon Rd., San Diego, CA 92121.

NP020602R