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Abstract
Eugenosedin-A is a newly synthesized compound with
special serotonergic, ·- and ß1-adrenergic blocking ac-
tions. Intravenous injection of eugenosedin-A signifi-
cantly caused dose-dependent decreases in the mean
arterial blood pressure and heart rate in normotensive
Wistar-Kyoto (WKY) and spontaneously hypertensive
rats (SHR). The effects of eugenosedin-A-decreased
blood pressure and heart rate in SHR were more potent
than in WKY. In in vitro experiments, eugenosedin-A
competitively antagonized the serotonin-, norepineph-
rine- and clonidine-induced vasocontraction in a concen-
tration-dependent manner in isolated thoracic aorta of
WKY and SHR. We also observed that eugenosedin-A
competitively antagonized the isoproterenol-induced
positive inotropic effects in a concentration-dependent
manner in the isolated left atrium of WKY and SHR.
These findings clearly suggested that eugenosedin-A
possesses ·1/·2, ß1 and 5-HT2A receptor-blocking activi-
ties. The order of pA2 values in isolated tissues of WKY

was 5-HT2A 1 ·1/·2 1 ß1. However, the order of pA2 values
in isolated tissues of SHR was ·1/·2 15-HT2A 1 ß1. Similar-
ly, we found that the in vitro functional activity of euge-
nosedin-A is quite different between WKY and SHR. On
the other hand, in the isolated rabbit ear artery sensitized
with 16 mmol/l K+, eugenosedin-A antagonized 5-nony-
loxytryptamine- and serotonin-induced vasocontrac-
tions, indicating that it also blocked 5-HT1B and 5-HT2A

receptors. In radioligand binding experiments, eugeno-
sedin-A had significant binding affinities on ·1/·2, ß1, 5-
HT1B and 5-HT2A receptors. Finally, we suggest that the
hypotensive effects of eugenosedin-A can be attributed
to its multiple actions on the blockade of 5-HT1B, 5-HT2A,
· and ß1 receptors in both WKY and SHR strains.

Copyright © 2004 S. Karger AG, Basel

Introduction

5-Hydroxytryptamine (5-HT) has many important ef-
fects on cardiovascular function, and its antagonists, such
as ketanserin, have been used to treat cardiovascular dis-
eases [1]. In addition, 5-HT is a potent vasoconstrictor
agent, capable of contracting arterial and venous tissues in
vitro and increasing blood pressure [1]. An increase in the
response to serotonergic agents has been documented in
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Fig. 1. Chemical structure of eugenosedin-A.
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vessels isolated from animal models of vasospasm or ath-
erosclerosis. These lines of evidence suggest that aug-
mented vasocontraction to serotonin, in relation to ath-
erosclerosis, may principally contribute to the genesis of
myocardial ischemia [2]. The increase in sensitivity to 5-
HT in hypertension has been demonstrated by showing
that aorta rings from spontaneously hypertensive rats
(SHR) had a greater sensitivity to 5-HT than rings from
Wistar-Kyoto rats (WKY) [3]. Blockade of peripheral vas-
cular serotonergic receptors has been proposed as a useful
mechanism for lowering blood pressure in animals and
humans. Since the early 1960s there have been reports of
interactions between ·-adrenergic and serotonergic sys-
tems [4–6]. In the past decade, more experimental evi-
dence has appeared indicating that some agonists (5-HT)
and antagonists (metitepine, ketanserin, cyproheptadine)
of the 5-HT receptor subtypes are able to interact with
·-adrenoceptors [6].

In the hypertensive situation, increased contractile re-
sponses to agonists have been correlated with an en-
hanced protein kinase C activity [7], augmented phos-
phoinositide metabolism [8], and increased Ca2+ mobili-
zation [9]. Whether these alterations are related to a spe-
cific ·1-adrenoceptor subtype in the vasculature of SHR,
different to the one present in WKY, is not exactly known
[10]. However, Michel et al. [11] showed an increase in
·-adrenoceptor density in kidneys from hypertensive rats.
Thereafter, Suzuki et al. [12] also demonstrated an in-
crease in the number of ·1-adrenoceptors along with an
increase in the affinity for antagonists in the mesenteric
vasculature of deoxycorticosterone-salt hypertensive rats.

Central and peripheral noradrenergic systems are im-
plicated in the regulation of arterial blood pressure. Hy-
pertension partially resembles a hyperadrenergic state,
dysfunction of a central mechanism in SHR, leading to an

increase in the release of noradrenaline [13]. The release
of noradrenaline from noradrenergic nerve terminals is
regulated by presynaptic ·2-adrenoceptors, and it is as-
sumed that the hypotensive effect of various centrally act-
ing antihypertensive drugs is due to the stimulation of
pre- and/or postsynaptic inhibitory ·2-adrenoceptors.
However, the existence of three subtypes of ·2-adrenocep-
tors, designated as ·2A, ·2B and ·2C, was proposed by Mur-
phy and Bylund [14]. The ·2A-adrenergic subtype is
located in the CNS and is concentrated in the cardiovas-
cular control center of the brainstem. ·2B-Adrenergic
receptors are located in arterial vascular smooth muscle
cells and cause peripheral vasoconstriction [15, 16]. In
addition, Fujimoto and Itoh [17] have shown that the ·2-
adrenoceptor agonist activity of clonidine in the thoracic
aorta produced contractile responses.

ß-Adrenoceptor blockers are an important class of
drugs in the management of patients with cardiovascular
diseases. These drugs have been shown to reduce mortali-
ty in hypertension [18] and prolong survival in patients
with ischemic heart diseases [19]. ß-Blockers retain their
position among basic therapies for numerous other car-
diovascular and non-cardiovascular conditions, includ-
ing arrhythmias, hypertropic cardiomyopathy, migraine,
glaucoma and thyrotoxicosis. The third-generation ß-
adrenoceptor blockers, such as labetalol and carvedilol
which predominantly have ß-adrenoceptor- and also an-
cillary ·-adrenoceptor-blocking activity, have been ap-
proved for the treatment of hypertension [20]. Cardiac ß-
adrenoceptor responsiveness might be reduced in estab-
lished hypertension in man and rat. Some function stud-
ies indicated impaired contractility in response to ß-adre-
noceptor agonists in the papillary muscle or whole heart
of SHR [21, 22].

2-Chloro-1-piperazinyl benzene (CPB) is a basic chem-
ical structure found in trazodone-like antidepressants
with ·2-adrenoceptor and 5-HT antagonist activities. Ar-
yloxypropanolamines, especially those that are isoeuge-
nol-based, have been reported to have antioxidizing activ-
ities in addition to their ß-adrenoceptor-blocking effects
[23, 24]. To the best of our knowledge, eugenosedin-A
(fig. 1), 4-�2-hydroxy-3-[1-(2-chlorophenyl-piperazinyl)]-
propoxy�-3-methoxy-1-propylenyl-benzene, was first syn-
thesized in this laboratory by combining isoeugenol-based
oxypropanolamine and CPB. We supposed that eugenose-
din-A, structurally with one part CPB base, could possess
CPB-related ·2-adrenoceptor and 5-HT receptor antago-
nist properties, and its ß-adrenoceptor blocking actions
could be derived from another part of isoeugenol-based
oxypropanolamine. This study aimed to look into the
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striking differences in the hypotensive effects of eugenose-
din-A in both WKY and SHR strains, and these findings
might provide more valuable information showing that
eugenosedin-A is suitable for use in the treatment of
patients with cardiovascular disorders.

Materials and Methods

Animals
WKY, SHR, and New Zealand White rabbits were provided by

the National Laboratory Animal Breeding and Research Center (Tai-
pei, Taiwan). They were housed under conditions of constant tem-
perature and controlled illumination (lights on between 07.30 and
19.30 h). Food and water were available ad libitum. The study was
approved by the Animal Care and Use Committee of Kaohsiung
Medical College.

Drugs and Chemicals
5-Nonyloxytryptamine, atenolol, clonidine, isoproterenol, ketan-

serin, labetalol, norepinephrine, prazosin, propranolol and serotonin
were all purchased from Sigma Chemical Co. (St. Louis, Mo., USA).
Eugenosedin-A (synthesized in this laboratory) was solubilized in
50% absolute alcohol at 1 mmol/l and further dilutions of it were
made in distilled water.

Measurement of Blood Pressure and Heart Rate
The experiments were accomplished as previously described [25].

In brief, WKY and SHR, weighing 250–300 g, were anesthetized
with pentobarbital sodium (50 mg/kg, i.p.). Following tracheal can-
nulation, systemic arterial blood pressure and heart rates were
recorded from the femoral artery with a pressure transducer (Model
P10EZ, Spectramed, Oxnard, Calif., USA). The body temperature
was maintained at 37°C by an electric heating pad. The femoral vein
was cannulated for intravenous administration of drugs.

In Vitro Study
Isolated Left Atria
WKY and SHR of either sex, weighing 350–500 g, were sacrificed

after mild anesthesia with ether and their hearts were quickly
excised. Left atria were dissected from the hearts and mounted in a
10-ml organ bath with one end fixed and the other end connected to a
force displacement transducer (Grass, Model FT03). The experi-
ments were carried out at 37°C in Krebs solution of the following
composition (mmol/l): NaCl 113, KCl 4.8, CaCl2 2.2, KH2PO4 1.2,
MgCl2 1.2, NaHCO3 25, dextrose 11.0; bubbled with a 95% O2 and
5% CO2 mixture. The left atrium was pre-stretched to a baseline ten-
sion of 0.5 g and equilibrated for 60 min in an aerated Krebs solution
before initiation of the experimental protocols. Atria were driven at
2-second intervals via two platinum electrodes placed on either side
of the atrium. An incubation time of 30 min was allowed for the test
compound. Data were calculated as a percentage of the maximal con-
traction.

Isolated Thoracic Aorta
The thoracic aorta of the rat was quickly removed, cleaned of

adhering fat and connective tissue and cut into 3- to 4-mm-wide
transverse rings, which were then mounted at 1 g resting tension on

stainless steel hooks in a 10-ml organ bath; bathed at 37 °C in physio-
logical solution (mmol/l: NaCl 118, KCl 4.8, CaCl2 2.5, MgSO4 1.2,
KH2PO4 1.2, NaHCO3 24, glucose 11); and aerated with a 95% O2
and 5% CO2 mixture. The isometric tension of the aortic rings was
monitored by a force displacement transducer (Model 7004, Ugo
Basile, Comerio, Italy). The tissues were allowed to equilibrate for 1 h
in physiological solution. Clonidine, norepinephrine and serotonin
(10–7–10–4 mol/l) were cumulatively added to the bath to induce
contractions or the bath was pretreated with eugenosedin-A and then
clonidine, norepinephrine and serotonin were cumulatively added.

Isolated Rabbit Ear Artery
This experiment was performed as previously described [26].

Rabbits (2–3 kg) were euthanized by pentobarbital to produce deep
anesthesia, then rapidly decapitated. Ear arteries were isolated,
cleaned of adhering fat and connective tissue and cut into 3- to 4-
mm-wide transverse rings; these rings were mounted for the mea-
surement of isometric contraction in tissue baths containing 95% O2
and 5% CO2-gassed Krebs solution at 37°C. Then mounted at 1.5 g
resting tension on stainless steel hooks in a 10-ml organ bath; bathed
at 37°C in physiological solution and aerated with a 95% O2 and 5%
CO2 mixture. The isometric tension of the aortic rings was monitored
by a force displacement transducer (Model 7004, Ugo Basile). The
tissues were allowed to equilibrate for 1 h in physiological solution;
then incubated with 16 mmol/l K+ for 30 min before 5-nonyloxytryp-
tamine or serotonin (10–8–10–4 mol/l) were cumulatively added to
the bath to induce contractions, or the bath was pretreated with euge-
nosedin-A and then 5-nonyloxytryptamine (5-HT1B agonist) or sero-
tonin (5-HT1B, 5-HT2A agonist) were cumulatively added.

Receptor-Binding Experiments
Radioligand-binding experiments were carried out as previously

published [25]. Briefly, both WKY and SHR brains (for ·1, ·2-adre-
noceptor, serotonergic receptor binding), hearts (for ß1-adrenocep-
tor) and lungs (for ß2-adrenoceptor) were homogenized with a Kine-
matica polytron in 20 vol of ice-cold TE buffer (10 mmol/l Tris HCl,
1 mmol/l EDTA, 0.1 mmol/l ascorbic acid, pH 7.4). The homogenate
was filtered with pressure through muslin. The filtrate was centri-
fuged at 1,000 g for 10 min. The supernatant was centrifuged again at
10,000 g for 12 min at 4°C. The second supernatant was centrifuged
at 30,000 g for 15 min at 4 °C, and the final pellet was resuspended in
assay buffer (75 mmol/l Tris HCl, 25 mmol/l MgCl2, pH 7.4). The
protein content was determined by Bradford’s method. Radioligand
agents and membranes (200–300 Ìg) were incubated for 60 min at
25°C with or without the addition of nonspecific binding agents (ta-
ble 1), in a 75-mmol/l Tris HCl buffer with 25 mmol/l MgCl2, to
make a final volume of 500 Ìl. In competitive-binding experiments,
the competing agent was added directly to the incubation mixture.
The incubation was terminated by addition of 1 ml of ice-cold assay
buffer followed by immediate filtration through Whatman GF/C
glass fiber filters supported on a 12-port filter manifold (Millipore).
The filters were immediately washed 3 times with 5 ml of ice-cold
assay buffer and dried in an oven at 60 °C for 2 h before adding 5 ml
of Triton-toluene-based scintillation fluid. Membrane-bound radioli-
gand trapped in the filters was counted in a Beckman LS6500 scintil-
lation system (Fullerton, Calif., USA) with an efficiency of 45%. In
each experiment, nonspecifically bound radioligand agents were
determined by incubating membrane protein. Specific binding was
thus obtained by deducting this value from the total binding of
radioligand agents for each sample.
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Fig. 2. Effects of eugenosedin-A ([ = 1 mg/kg; f = 3 mg/kg; p =
5 mg/kg; $ = 10 mg/kg) and its vehicle (P) on mean arterial blood
pressure in WKY (A) and SHR (B), anesthetized with pentobarbital.
Each point represents the mean of 8 rats. * Significantly different
from control, p ! 0.05 (two-way repeated measures analysis of vari-
ance (ANOVA) followed by Student-Newman-Keuls test).
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Fig. 3. Effects of eugenosedin-A ([ = 1 mg/kg; f = 3 mg/kg; p =
5 mg/kg; $ = 10 mg/kg) and its vehicle (P) on the heart rate in WKY
(A) and SHR (B) anesthetized with pentobarbital. Each point repre-
sents the mean of 8 rats. * Significantly different from control, p !
0.05 (two-way repeated-measures analysis of variance (ANOVA) fol-
lowed by Student-Newman-Keuls test).

Time (min)

H
ea

rt
 R

at
e 

(b
pm

)

260

280

300

320

340

360

380

Time (min)

H
ea

rt
 R

at
e 

(b
pm

)

260

280

300

320

340

360

380

*

***
* * * *

* * * *

*
*

* * **

*

*****
*

* * *

* * * *

*
***

*
*

**
*

**
*

*
* *

*

*
**

***

0 10 20 30 40 50 60

0 10 20 30 40 50 60

A

B

Table 1. Assay conditions for 3H-ligand
displacement studies Receptor 3H-ligand

nmol/l
Kd in WKY
nmol/l

Kd in SHR
nmol/l

Nonspecific ligand
Ìmol/l

5-HT1A WAY1000635 (1) 0.12B0.01 0.26B0.06 Serotonin (10)
5-HT1B GR125743 (3) 0.79B0.03 1.05B0.02 Serotonin (10)
5-HT2A Ketanserin (0.5) 0.52B0.04 0.39B0.01 Serotonin (10)
·1 Prazosin (0.2) 0.25B0.05 0.31B0.02 Phentolamine (10)
·2 Yohimbine (2) 5.34B0.06 6.76B0.08 Phentolamine (10)
ß1 CGP12177 (1) 0.16B0.01 0.37B0.03 Propanolol (10)
ß2 CGP12177 (3) 1.21B0.03 1.14B0.05 Propanolol (10)

Kd denotes the equilibrium dissociation constant obtained from Scatchard analysis.
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Fig. 4. Antagonism of the vasocontractile
effects of serotonin (A), norepinephrine (B)
and clonidine (C), and the atrial contractility
of isoproterenol (D) in the absence (P) or
presence of eugenosedin-A ([ = 10–8 mol/l;
f = 10–7 mol/l; p = 10–6 mol/l). Cumula-
tive concentration-response curves were de-
termined in isolated WKY thoracic aortic
rings. Each value represents the mean B SE
of 8 rats.

456789P
er

ce
nt

ag
e 

of
 c

on
tr

ac
ti

on
 (

%
)

P
er

ce
nt

ag
e 

of
 c

on
tr

ac
ti

on
 (

%
)

0

20

40

60

80

100

120

456789

0

20

40

60

80

100

120

456789

0

20

40

60

80

100

120

67891011P
er

ce
nt

ag
e 

of
 c

on
tr

ac
ti

on
 (

%
)

P
er

ce
nt

ag
e 

of
 c

on
tr

ac
ti

on
 (

%
)

0

20

40

60

80

100

120

-Log [Serotonin] (mol/l) -Log [Clonidine] (mol/l)

-Log [Norepinephrine] (mol/l) -Log [Isoproterenol] (mol/l)

A

B

C

D

Statistical Evaluation of Data
The results are expressed as mean B SE. Statistical differences

were determined by independent and paired Student’s t test in
unpaired and paired samples, respectively. Whenever a control
group was compared with more than 1 treated group, the one-way
ANOVA or two-way repeated measures ANOVA was used. When the
ANOVA manifested a statistical difference, the Dunnett’s or Stu-
dent-Newman-Keuls test was applied. A p value of !0.05 was consid-
ered to be significant in all experiments. Analysis of the data and
plotting of the figures were done with the aid of software (SigmaPlot
Version 8.0 and SigmaStat Version 2.03, Chicago, Ill., USA) run on
an IBM-compatible computer.

Results

Effects of Eugenosedin-A on Blood Pressure and Heart
Rate
Acute intravenous injection of eugenosedin-A (1.0,

3.0, 5.0, 10.0 mg/kg) produced long-lasting dose-depen-
dent hypotensive effects on blood pressure and decreases
in heart rate in pentobarbital-anesthetized WKY and
SHR (fig. 2, 3). The decreases in blood pressure and heart
rate by eugenosedin-A were more significant in SHR than
in WKY.

Vasorelaxant Effects of Eugenosedin-A
Eugenosedin-A (10–8, 10–7, 10–6 mol/l) concentration-

dependently inhibited the cumulative serotonin-, norepi-
nephrine- and clonidine-induced contractile effects in iso-
lated WKY and SHR thoracic aorta. Serotonin, norepi-
nephrine and clonidine concentration-response curves
caused a dose-dependent parallel shift to the right by
eugenosedin-A (fig. 4, 5). The pA2 values and slopes of
regression lines are indicated in table 2.

Electrically Stimulated Left Atria
Eugenosedin-A (10–8, 10–7, 10–6 mol/l) also concentra-

tion-dependently antagonized the cumulative isoprotere-
nol-induced positive inotropic effects in isolated WKY
and SHR left atria. Eugenosedin-A produced a dose-
dependent parallel shift to the right of the isoproterenol
concentration-response curves (fig. 4, 5). The pA2 values
and slopes of regression lines are indicated in table 2.

5-HT1B/5-HT2A Receptor Antagonist Activity
In isolated rabbit ear arteries sensitized with 16 mmol/l

K+, 5-nonyloxytryptamine was subsequently added to
induce vasoconstriction. Eugenosedin-A (10–6, 10–5, 10–4

mol/l) caused the concentration-response curves of 5-
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Fig. 5. Antagonism of vasocontractile effects
of serotonin (A), norepinephrine (B) and clo-
nidine (C), and the atrial contractility of iso-
proterenol (D) in the absence (P) or pres-
ence of eugenosedin-A ([ = 10–8 mol/l; f =
10–7 mol/l; p = 10–6 mol/l). Cumulative
concentration-response curves were deter-
mined in isolated SHR thoracic aortic rings.
Each value represents the mean B SE of 8
rats.
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Table 2. The pA2 values for eugenosedin-A
in isolated tissues of Wistar-Kyoto rats
(WKY) and spontaneously hypertensive
rats (SHR)

WKY (slope) SHR (slope)

Thoracic aorta (5-HT2A) 8.86B0.32 (0.89B0.12) 7.08B0.24 (0.95B0.10)
Thoracic aorta (·1) 7.88B0.13 (0.85B0.07) 7.71B0.32 (0.84B0.09)
Thoracic aorta (·1/·2) 7.49B0.27 (0.60B0.10)a 7.68B0.15 (0.65B0.08)a

Atrium (ß1) 6.55B0.24 (1.14B0.13) 6.34B0.22 (0.88B0.12)

The pA2 values were calculated from individual Schild plots by regression analysis. Each
pA2 value is the mean B SE of 6–8 experimental results.
a The slope of the Schild plot was significantly less than unity.

nonyloxytryptamine or serotonin to shift to the right. The
pA2 values of eugenosedin-A for 5-HT1B and 5-HT1B/2A

receptors were 5.67 B 0.18 and 6.41 B 0.74, respectively
(fig. 6).

Radioligand-Binding Study
As shown in figure 7, eugenosedin-A was competitively

bound to the ·- and ß-adrenoceptors and serotonin recep-
tors. The Ki values of eugenosedin-A for each [3H]-ligand
binding site in the various tissue membranes of WKY and
SHR are indicated in tables 3 and 4. Eugenosedin-A was
mainly bound to ·1, ·2, ß1, 5-HT1B and 5-HT2A receptors;

however, it had no significant binding affinities on ß2 and
5-HT2A receptors. Eugenosedin-A had a greater selectivity
in WKY to bind to the 5-HT1B receptor in comparison
with SHR. Serotonin was the only one that bound to the
5-HT1A receptor and showed that the binding affinity in
SHR was higher than in WKY. We also found that sero-
tonin had ·1-adrenoceptor binding affinity exclusively in
SHR, but not in WKY. Ketanserin was greatly selective
for the 5-HT2A receptor and also showed significant bind-
ing affinities for ·1 and ·2. Prazosin was extremely
selective for the 5-HT2A receptor whereas it still had sig-
nificant binding affinities for ·2 and 5-HT2A. The nonse-
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Fig. 6. Antagonism of vasocontractile effects of 5-nonyloxytrypt-
amine (A) and serotonin (B) in the absence (P) or presence of euge-
nosedin-A ([ = 10–6 mol/l; f = 10–5 mol/l; p = 10–4 mol/l). Cumula-
tive concentration-response curves were determined in isolated rab-
bit ear arteries rings. Each value represents the mean B SE of 8 rats.
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Fig. 7. Inhibition of [3H]-ligand specific binding to serotonin, ·- and
ß-receptor subtypes on various tissue membranes by eugenosedin-A
in WKY (A) and SHR (B). The individual symbol indicated 5-HT1A
(P), 5-HT1B ([), 5-HT2A (f), ·1 (p), ·2 ($), ß1 ()) and ß2 (X) recep-
tors. Data shown are the means of 3 independent triplicate determi-
nations. Each value represents the mean B SE.
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Table 3. Affinity constants for eugenosedin-A and other reference compounds in Wistar-Kyoto rats

Agents 5-HT1A 5-HT1B 5-HT2A ·1 ·2 ß1 ß2

Eugenosedin-A NS 114.41 47.79 151.03 1,746.28 90.06 NS
Atenolol NS NS NS NS NS 262.76 8,511.45
Labetalol NS NS 612.13 52.48 3,542.91 4.17 52.48
Propranolol NS NS 291.63 NS NS 0.37 0.71
Prazosin NS NS 2,298.62 3.31 318.44 NS NS
Ketanserin NS NS 0.047 30.65 2,893.31 NS NS
Serotonin 0.04 50.64 163.81 NS NS NS NS

Ki values (nmol/l) were calculated from the equation Ki = IC50/(1 + (3H)-ligand/Kd). Kd and (3H)ligand denote the
dissociation constant and the free concentration of the radiolabel, respectively.

NS = Nonsignificant.
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Table 4. Affinity constants for eugenosedin-A and other reference compounds in spontaneously hypertensive rats

Agents 5-HT1A 5-HT1B 5-HT2A ·1 ·2 ß1 ß2

Eugenosedin-A NS 714.16 78.49 184.34 2,336.79 96.15 NS
Atenolol NS NS NS NS NS 450.81 5,168.64
Labetalol NS NS 722.73 43.25 2,579.5 11.37 10.43
Propranolol NS NS 265.04 NS NS 5.97 1.98
Prazosin NS NS 3,086.39 0.003 66.17 NS NS
Ketanserin NS NS 0.01 0.95 2,226.81 NS NS
Serotonin 0.01 20.33 52.91 185.89 NS NS NS

Ki values (nmol/l) were calculated from the equation Ki = IC50/(1 + (3H)-ligand/Kd). Kd and (3H)ligand denote the
dissociation constant and the free concentration of the radiolabel, respectively.

NS = Nonsignificant.

lective ß-blocker propranolol and the ·/ß-blocker labeta-
lol both showed significant binding affinities for the 5-
HT2A receptor, but in striking contrast to the selective ß1-
blocker atenolol.

Discussion

Eugenosedin-A is able to antagonize ·1-, ·2-adrenergic
and serotonergic agonists which evoke aortic contractions
from WKY and SHR. In the isolated atria, eugenosedin-A
concentration-dependently inhibited the positive inotro-
pic effects induced by isoproterenol. Intravenous admin-
istration of eugenosedin-A produced dose-dependent de-
creases in mean blood pressure and heart rate in pento-
barbital-anesthetized WKY and SHR, whereas the de-
pressor effect in SHR is more obvious than in WKY.
From the functional pA2 results, we demonstrated that
eugenosedin-A is more potent on the 5-HT2A receptor in
WKY than in SHR. In this report, we clarified that euge-
nosedin-A is a 5-HT receptor, predominant for 5-HT1B

and 5-HT2A, and ·1/·2-adrenoceptor-blocking agents with
additional blockade of the ß-adrenoceptor but not ß2.
Eugenosedin-A combined with 5-HT and ·-receptor
blockade could contribute to the rapid onset of its hypo-
tensive effects. Its additional ß1-adrenoceptor-blocking
activity could prevent reflex tachycardia. In this study, we
observed that eugenosedin-A caused a significant reduc-
tion in heart rate. Particularly, it did not have any signifi-
cant blockade on ß2-adrenoceptor and this could be of
clinical relevance because it may reduce the risk of asth-
matic attack in patients with bronchospastic disease. On
the other hand, Ishida et al. [2] demonstrated that the 5-
HT1B receptor was activated by atherosclerosis and aug-

mented vasocontraction to serotonin, in relation to ath-
erosclerosis. Eugenosedin-A also blocked 5-HT1B and 5-
HT2A receptors, and thus suggested that it could provide
more benefit in the treatment of cardiovascular disorders
including hypertension and/or atherosclerosis.

Some reports demonstrated that ketanserin antago-
nizes contractions of vascular smooth muscle cells occur-
ring in the presence of 5-HT [27]. Van Nueten et al. [28]
also pointed out that ketanserin is due to activation of
serotonergic receptors, to stimulation of the ·-adrenocep-
tor or to interaction between serotonergic and ·-adrener-
gic activation. Ketanserin caused a dose-dependent re-
duction in arterial blood pressure in SHR. It could be
assumed that the hypotensive effect of ketanserin was also
related to its ·-adrenolytic properties [28]. In recent years,
numerous studies have documented several interactions
between noradrenaline and 5-HT systems. Haddjeri et al.
[29] reported that pindolol interacts with 5-HT1A recep-
tors with nanomolar affinity and prevents some biologic
responses mediated via 5-HT1A-receptor activation. It is
well established that noradrenaline neurons modulate the
activity of the 5-HT system, and there are several lines of
evidence supporting the notion that the 5-HT system also
influences brain noradrenaline neurons [29].

Seven receptor subtypes of 5-HT are known to exist
and, of them, the 5-HT1 and 5-HT2 receptors are known
to mediate contractile responses in blood vessels, and the
5-HT1A receptor mediates the central regulation on blood
pressure. The 5-HT2 receptor seems to be involved in the
vascular response to serotonin [30, 31]. Several pharma-
cological studies support the involvement of the 5-HT2A

receptor in mediating the contractile response in rat pul-
monary arteries [32, 33]. In our receptor-binding results,
we observed that eugenosedin-A had 5-HT2 receptor-
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binding affinity. Meanwhile, in experiments on isolated
rat aortas, we also found that eugenosedin-A produced a
dose-dependent parallel shift to the right of the serotonin
concentration-response curves. Therefore, we suggest that
eugenosedin-A has 5-HT2 receptor-blocking activity.

Åhlund et al. [34] reported a 10-fold greater sensitivity
to 5-HT on aortic strips from SHR compared to normo-
tensive rats of nonspecified origin. Webb and Vanhoutte
[35] also showed that 5-HT constrictor responses are aug-
mented in rat models of genetic hypertension, in vivo and
in vitro. In this kind of rat model, pressor responses to
5-HT are enhanced to a much greater extent than those to
noradrenaline and angiotensin II. The cellular mecha-
nisms that may contribute to the increased sensitivity to
5-HT in hypertensive rats could include changes in the
affinity of the receptors for 5-HT [36]. Thus, we could not
ignore that 5-HT also notably affects the cardiovascular
system. From our isolated experiments, we found that
eugenosedin-A acts on 5-HT receptors and its response is
easier to reverse by serotonin in SHR aortic rings than in
WKY. Taken together, it could explain our aortic data
showing that the antagonistic effect of eugenosedin-A for
5-HT receptors in SHR was lower than that of WKY.

The decreased Kd value of the ·1-adrenoceptor in the
myocardium of SHR suggested an increase in the sensitiv-
ity of this receptor to the catecholamine [37]. However,
Watanabe et al. [38] showed that the Bmax and Kd values
of the ·1-adrenoceptor in WKY and SHR were not signifi-
cantly different. In our isolated aortic results, we showed
that the pA2 and Ki values of eugenosedin-A in SHR and
WKY were similar. In SHR, the density of the ·2-adreno-
ceptor was reduced in the cerebral cortex, hypothalamus
and medulla oblongata [39]. The reduced density of the
·2-adrenoceptor in the brain of SHR is in contrast to the
higher density found in the kidney, which has been linked
to the pathogenesis of some models of genetic hyperten-
sion [40]. However, other models of experimental hyper-
tension have been associated with downregulation of the
·2-adrenoceptor in various peripheral tissues including
the kidney [41]. Our functional results show that the pA2

value of eugenosedin-A in the thoracic aorta of SHR for
the ·2-adrenoceptor was not significantly different from
WKY. Therefore, we suggest that the function of the ·2-
adrenoceptor in the peripheral aortic tissues of SHR is
probably similar to WKY. In addition, the Ki values of
eugenosedin-A in WKY showed effects similar to those of
SHR. The results indicated that eugenosedin-A might still
possess the same binding affinities between SHR and
WKY, although the density of the ·2-adrenoceptor is
reduced in the brain of SHR as previously reported [40].

Post-junctional ·-adrenoceptors in the vasculature have
been subdivided into ·1-and ·2-subtypes. McGrath [42]
defined responses mediated by post-junctional ·2-adreno-
ceptors as those which are insensitive to the ·1-adrenocep-
tor antagonist prazosin, but which are more sensitive to the
·2-adrenoceptor antagonist rauwolscine. Three subtypes of
·2-adrenoceptors, designated ·2A, ·2B and ·2C, were pro-
posed by Murphy and Bylund [14]. The ·2-adrenergic sub-
type is located in the CNS and is concentrated in the car-
diovascular control center of the brainstem. ·2B-Adrener-
gic receptors are located in arterial vascular smooth muscle
cells and cause peripheral vasoconstriction [15, 16]. Since
·2-adrenoceptors may be involved in contractions of rat
aorta, Fujimoto and Itoh [17] pointed out that the ·2-adre-
noceptor agonist clonidine in the thoracic aorta produces
contractile activity. But in some studies, clonidine was
described as being able to activate the ·1-adrenoceptor to
contract blood vessels [43]. However, the possibility that
the rat aorta contains a heterogeneous population of ·-
adrenoceptors should not be excluded [17]. In view of the
fact that the slope of the Schild plot for eugenosedin-A
deviated from unity in clonidine-pre-contracted aorta, we
therefore propose that eugenosedin-A-mediated inhibition
of the clonidine-induced contraction is caused by antago-
nism on ·1/·2-adrenoceptors.

The Bmax value in the ß1-adrenoceptors of 16-week-old
SHR was higher than that of WKY [38]. However, Dog-
grell and Surman [44] have shown that functional ß-adre-
noceptors in the left atrium of hypertensive rats were not
altered. In our left atrial strips, eugenosedin-A antago-
nized the isoproterenol-induced positive inotropic effects
in WKY and SHR. The pA2 value of eugenosedin-A in
atria of SHR was similar to WKY and the Ki value was
also not significantly different between both strains. Here,
we suggest that eugenosedin-A produced no significant
changes in the functional and binding affinity of ß1-adre-
noceptors in SHR in comparison with WKY, even the
density of ß1-adrenoceptor is enhanced in the heart of
SHR [38].

In our rabbit ear artery experiments, we used 16 mmol/l
K+ on vessel rings to elicit the changes in membrane
potential. This elevation in external K+ decreases the con-
centration gradient for K+ across the cell membrane, and
causes a modest depolarization in the muscle cells of iso-
lated rabbit ear artery [26]. In turn, this depolarization is
thought to cause contraction by the opening of voltage-
dependent calcium channels [45]. Slightly elevated exter-
nal K+ concentrations increased the sensitivity of both the
aorta and ear artery. In the rabbit aorta, the contractile
response to serotonin is mediated through 5-HT2A recep-
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tors, but serotonin does not act as a full agonist [26]. It was
proposed that pre-contraction with either slightly elevated
K+ or the receptor agonist enables or unmasks only 5-
HT1-like receptors [47]. Many studies have presented evi-
dence for a 5-HT1-like receptor in several different vascular
beds [46, 47]. Moreover, a consensus is building in the
literature that the vascular 5-HT1-like receptor belongs to
5-HT1B receptor subtype [48]. Pre-sensitization with K+

on the rabbit ear artery enables activation of both 5-HT2A

and 5-HT1B receptors. Recently, many scientific reports
suggested that both the 5-HT2A and 5-HT1B receptors
were involved in vascular contraction [26]. Eugenosedin-
A not only inhibited serotonin-induced vasocontractions
in rat 5-HT2A receptors, but also antagonized serotonin-
or 5-nonyloxytryptamine (selective for 5-HT1B receptors)-
induced contractions in the rabbit ear artery. However,
eugenosedin-A may be shown to have nonspecific inhibi-
tion on 5-HT2A and 5-HT1B receptors at high concentra-
tions. It is generally accepted that at high concentrations
most agents should activate nonspecific receptors, and
this could be happening to eugenosedin-A. At concentra-
tions higher than 10–5 mol/l, eugenosedin-A appears to
suppress the 5-nonyloxytryptamine- and serotonin-in-
duced rabbit ear artery contractions noncompetitively;
thus, we suggest that eugenosedin-A might block addition-
al receptors and not only 5-HT. Indeed, in the isolated
thoracic aorta of WKY and SHR we observed that euge-
nosedin-A competitively antagonized the serotonin-in-
duced vasocontractions in a concentration-dependent
manner. Furthermore, in a radioligand-binding assay,
we also found that eugenosedin-A in competing with
[3H]GR125743 and [3H]ketanserin for 5-HT1B and 5-
HT2A receptors, respectively, is reversible displaced and
has good affinity as shown in figure 7. Taken together, we
still suggest that eugenosedin-A possesses serotonin antag-
onistic activities and probably has some extent of selectiv-
ity for 5-HT2A and 5-HT1B receptors.

In recent years, drugs that combined ß-adrenoceptor
blocking with vasodilating or ·-adrenoceptor-blocking
properties have been introduced as more efficacious anti-
hypertensive and anti-atherosclerotic agents, since such
drugs reduce blood pressure and plasma lipids by two
complementary mechanisms [49, 50]. As we know, carve-
dilol and labetalol are both principal representatives
among these agents. However, the antagonistic actions on
5-HT receptors of both agents were little described. It
must be emphasized that the actions of eugenosedin-A
appear similar to those of carvedilol and labetalol, but in
particular with additional 5-HT receptor-blocking activi-
ties. It is widely accepted that serotonin-evoked contrac-
tions of human large coronary arteries were mediated by
both 5-HT1B and 5-HT2A receptors. In addition, an in-
crease in the response to serotonergic agents has been doc-
umented in vessels isolated from animal models of vaso-
spasm or atherosclerosis. Serotonin concentrations were
elevated in the coronary sinus in patients with coronary
artery disease [2]. Augmented constrictor responses to
intracoronary administration of serotonin have been
demonstrated in patients with coronary atherosclerosis
[51]. In this study, we have demonstrated the diverse
activities of eugenosedin-A in WKY and SHR, its various
receptor-binding affinities between the two strains, and
shown that eugenosedin-A not only antagonizes the ·1/·2-
and ß1-adrenoceptors but also blocks the 5-HT1B and 5-
HT2A receptors. In conclusion, we suggest that, due to its
multiple functional activities, eugenosedin-A might be a
development in the treatment of hypertension and/or in
preventing the atherosclerosis.
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