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Abstract. Shifted-Chebyshev-series approach (SCSA) and hybrid Taguchi-genetic algo-
rithm (HTGA) were integrated into a Takagi-Sugeno (TS) fuzzy model nonlinear human
immunodeficiency virus (HIV) dynamics. Since only the algebraic computations in SCSA
were applied in the TS fuzzy model-based dynamic equations, the proposed model simpli-
fied the problem by transforming it into a static optimization problem represented by
algebraic equations. In static optimization problems, SCSA and HTGA simultaneously
found the optimal antecedent and consequent parameters of the TS fuzzy model by directly
minimizing the root-mean-squared-error (RMSE) performance index. An example of the
proposed integrated model is given to demonstrate its efficacy.
Keywords: TS fuzzy model, HIV dynamics, Chebyshev series, Genetic algorithm

1. Introduction. Mathematical models of the epidemiological and immunological dy-
namics of human immunodeficiency virus (HIV) have proven valuable for understanding
the HIV pathogenesis (see, e.g., [1-13] and references therein). Therefore, many works
have studied the problem of modeling HIV dynamics (see, e.g., [14-22] and references
therein). Because the spread of HIV is complex and nonlinear, however, accurate dy-
namic models are difficult to construct. To improve therapeutic treatment for HIV, a
simple and effective computer model of nonlinear HIV dynamics is needed to facilitate
analysis of its pathogenesis.

In 1985, Takagi and Sugeno first proposed the use of fuzzy IF-THEN rules in a fuzzy
model (TS fuzzy model) [23]. Since then, the TS fuzzy model has proven effective for
studying many other nonlinear dynamic systems [24-26]. Unlike the conventional approach
of using a single model to describe global behavior in a nonlinear system, the TS fuzzy
modeling approach is essentially a multimodel approach in which the simple submodels
(typically linear models) are combined to describe the global behavior of the nonlinear
system. Each fuzzy rule in a TS fuzzy system has an associated linear dynamic model
that expresses its local dynamics and the overall fuzzy model is constructed by combining
these rules. Given the demonstrated effectiveness of the TS fuzzy modeling approach
in nonlinear systems [24-37], this study developed a TS fuzzy model of nonlinear HIV
dynamics.

When designing TS fuzzy models, however, solutions for TS-fuzzy-model-based dynamic
equations are usually needed to calculate the approximation error between the nonlinear
system and its TS fuzzy model derived by computer simulation. Therefore, Ho and Chou
[38,39], Hsieh et al. [40] and Ho et al. [41] proposed the shifted-Chebyshev-series approach
(SCSA) as a simple and efficient method of deriving non-iterative, non-differential and
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non-integral algorithms suitable for use in constructing computer models to solve TS
fuzzy model-based dynamic equations. By converting dynamic problems into a system of
algebraic equations, SCSA provides a short and simple solution procedure. Ho and Chou
[39] also showed that SCSA outperforms conventional numerical solutions for TS fuzzy
model-based dynamic equations.
This study, therefore, used SCSA to transform the TS fuzzy model of nonlinear HIV

dynamics into a much simpler static parameter optimization problem represented by al-
gebraic equations. Both the differential and integral computational complexity of the
resulting TS fuzzy model of nonlinear HIV dynamics are substantially reduced. When
solving static optimization problems, hybrid Taguchi-genetic algorithm (HTGA) simul-
taneously optimizes the antecedent and consequent parameters of the TS fuzzy model of
nonlinear HIV dynamics. The proposed integrative method directly minimizes the root-
mean-squared-error (RMSE), a key performance index, in the TS fuzzy model of nonlinear
HIV dynamics. The HTGA also incorporates Taguchi method in crossover operations to
enhance systematic reasoning ability and optimize the selection of genes needed to gen-
erate representative chromosomes for new offspring. The HTGA has global exploration
capability, and its robustness is enhanced by two major tools used in the Taguchi exper-
imental design process: (i) signal-to-noise ratio as a quality measure and (ii) orthogonal
arrays [42-45]. The proposed integration of SCSA and HTGA is simple, efficient and
well-suited for computer modeling. It satisfactorily solves design problems in TS fuzzy
models of nonlinear HIV dynamics. An illustrative example demonstrates the efficacy
of the proposed integrative method of constructing TS fuzzy models of nonlinear HIV
dynamics.
This paper is organized as follows. Section 2 describes the proposed method of inte-

grating SCSA with HTGA in a TS fuzzy model of nonlinear HIV dynamics. Section 3
evaluates the efficiency of the proposed integrative method in an illustrative example of
three-dimensional nonlinear HIV dynamics. Finally, Section 4 concludes the study.

2. Design of the TS Fuzzy Model of Nonlinear Dynamics. In the following equa-
tion for nonlinear HIV dynamics:

ẋ(t) = f(x(t)), (1)

the initial state vector is x(0), where x(t) = [x1(t), x2(t), . . . , xn(t)]
T denotes the n-

dimensional state vector.
Where N is the number of rules, the nonlinear HIV dynamics in (1) can be represented

by the following TS fuzzy model-based dynamic system:

Ri : IF x̄1(t) is Mi1 and . . . and x̄n(t) is Min,

Then ˙̄x(t) = Aix̄(t), (2)

and the initial state vector is x̄(0) = x(0), where Ri (i = 1, 2, . . . , N) denotes the ith

implication, x̄(t) = [x̄1(t), x̄2(t), . . . , x̄n(t)]
T denotes the n-dimensional state vector, Ai ∈

Rn×n (i = 1, 2, . . . , N) are the consequent constant matrices, and Mij (i = 1, 2, . . . , N)
and (j = 1, 2, . . . , n) are the antecedent fuzzy sets.
The resulting TS fuzzy model-based dynamic equation inferred from (2) is

˙̄x(t) =
N∑
i=1

hi (x̄(t))Aix̄(t), (3)
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where hi (x̄(t)) = wi (x̄(t))

/
N∑
i=1

wi (x̄(t)), wi (x̄(t)) =
n∏

j=1

Mij (x̄j(t)) and Mij (x̄j(t)) are

the Gaussian membership grades of x̄j(t) in the antecedent fuzzy sets Mij (i = 1, 2, . . . , N
and j = 1, 2, . . . , n) and

Mij (x̄j(t)) = exp

(
− [x̄j(t)−mij]

2

2σ2
ij

)
, (4)

where mij and σij are the center and width, respectively, of the Gaussian membership
function of the ith implication of the jth input variable x̄j(t).

Assuming elements of x̄(t) and x(t) are absolutely integrable within ktf ≤ t ≤ (k+1)tf ,
where tf denotes a short time interval selected for independent variable t, let

t = ktf + η, (5)

x̄k = x̄(ktf ), (6a)

xk = x(ktf ), (6b)

where k = 0, 1, 2, . . ., and 0 ≤ η ≤ tf .
The state vector x̄(t), within ktf ≤ t ≤ (k+1)tf , can be approximated by the truncated

shifted Chebyshev series as

x̄(t) =
m−1∑
s=0

x(k)
s Ts(t) = x̃(k)T (t), (7)

where m is the number of terms required for the shifted Chebyshev series, T (t) =

[T0(t), T1(t), . . . , Tm−1(t)]
T denotes the m × 1 shifted-Chebyshev-series vector, x

(k)
s (s =

0, 1, . . . ,m − 1) is the n × 1 coefficient vector and x̃(k) =
[
x
(k)
0 , x

(k)
1 , . . . , x

(k)
m−1

]
are the

n×m expansion coefficient matrices of x̄(t), in which the shifted Chebyshev series are as
follows [39]:

T0(t) = 1,

T1(t) = (2ktf + tf − 2t)/tf ,

...
...

...

Tr+1(t) = ((4ktf + 2tf − 4t)/tf )Tr(t)− Tr−1(t),

(8)

where r = 1, 2, 3, . . .. Theoretically, the larger the value of m, the more accurate the
approximate solutions. In an earlier study [38,39], the author reported that m ∈ [4, 8] is
generally sufficient for solving shifted Chebyshev series problems with satisfactory accu-
racy.

Before inferring the consequent output, the degree of fulfillment of the antecedent must
be computed. Since tf is a small time interval, the value of hi(x̄(t)), within ktf ≤ t ≤
(k+1)tf , is assumedly a constant and hi(x̄(ktf )). Therefore, integrating (3) from t = ktf
to t = t into ktf ≤ t ≤ (k + 1)tf , obtains

x̄(t)− x̄(ktf ) =
N∑
i=1

hi(x̄(ktf ))Ai

∫ t

ktf

x̄(t)dt. (9)

Remark 2.1. Before the consequent output in (3) (i.e., (2)) can be inferred within the
small time interval ktf ≤ t ≤ (k + 1)tf , the fulfillment of the antecedent in (3) (i.e., (2))
must be computed. Therefore, the value of hi(z(t)) within ktf ≤ t ≤ (k+1)tf , is assumedly
constant under the condition that tf is small. Theoretically, the smaller the value of tf , the
more accurate the approximate solutions. In an earlier study [38,39], the authors showed
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that tf ∈ [0.01, 0.001] obtains acceptable accuracy when using shifted Chebyshev series to
solve TS fuzzy model-based dynamic differential equations. The author also showed that,
compared to conventional numerical methods, the SCSA obtains better solutions for TS
fuzzy model-based dynamic differential equations [39]. Therefore, this study proposes a
numerical optimization approach that integrates SCSA with HTGA to represent nonlinear
HIV dynamics where the value of hi(z(t)) is assumed to be constant within a small time
interval ktf ≤ t ≤ (k + 1)tf .

According to the following integral property of the shifted Chebyshev series:∫ t

ktf

T (t)dt = HT (t), (10)

(6a) and (7) can recast (9) as

x̃(k) − [x̄k, 0, 0, . . . , 0] =
N∑
i=1

hi(x̄k)Aix̃
(k)H, (11)

where H is the following operational integration matrix for the shifted Chebyshev series
[38,39]:

H = tf



1

2
−1

2
0 · · · 0 0 0

1

8
0 −1

8
· · · 0 0 0

−1

6

1

4
0 · · · 0 0 0

− 1

16
0

1

8
· · · 0 0 0

...
...

...
...

...
...

...
−1

2(m− 1)(m− 3)
0 0 · · · 1

4(m− 3)
0

−1

4(m− 1)
−1

2m(m− 2)
0 0 · · · 0

1

4(m− 2)
0



. (12)

Equation (11) can be rewritten as

x̃(k) −
N∑
i=1

hi(x̄k)Aix̃
(k)H = Q̃(k), (13)

where Q̃(k) = [x̄k, 0, 0, . . . , 0] is an n×m known matrix.
By applying the Kronecker product, the explicit form for solution x̃(k) derived from

(13) is

x̂(k) =

[
Imn −

N∑
i=1

hi(x̄k)H
T ⊗ Ai

]−1

Q̂(k), (14)

where Imn denotes the mn×mn identity matrix, x̂(k) =
[
x
(k)T

0 , x
(k)T

1 , . . . , x
(k)T

m−1

]T
, Q̂(k) =[

x̄T
k , 0

T, 0T, . . . , 0T
]T

and ⊗ denotes the Kronecker product [46].

The above algebraic formula in (14) for calculating x
(k)
s (s = 0, 1, 2, . . . ,m−1) is located

within any time interval ktf ≤ t ≤ (k + 1)tf (k = 0, 1, 2, . . .). All these values for x
(k)
s

provide the information needed to calculate the state vector x̄(t) within the time interval
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ktf ≤ t ≤ (k + 1)tf . By letting η = tf , the following equation can also be obtained from
(7):

x̄k+1 = x̃(k)T ((k + 1)tf ), (15)

where k = 0, 1, 2, . . ., and x̄k+1 = x̄((k + 1)tf ). The TS fuzzy model-based dynamic
equation in (3) can be solved by the recursive formulae in (4), (14) and (15), which
only involve matrix algebra. Therefore, based on the recursive formulae in (4), (14) and
(15), the following simplified algorithm is proposed for solving the TS fuzzy model-based
dynamic equations in (3) by algebraic computation alone:

Step 1: Given a small time interval tf , and an initial state vector x(0), set k = 0.
Step 2: Calculate hi(x̄(ktf )) from (4) for i = 1, 2, . . . , N .
Step 3: Calculate x̂(k) from (14).
Step 4: Compute the solution x̄((k + 1)tf ) from (15).
Step 5: Set k = k + 1 and go to Step 2.
The above algorithm clearly shows that x̃(k) (k = 0, 1, 2, . . .) can be determined by spec-

ifying one set of the center and width (mij and σij, respectively) of the Gaussian mem-
bership function of the antecedent fuzzy sets Mij, and the consequent constant matrices
Ai, in which the elements of Ai are denoted as aijl (i = 1, 2, . . . , N , j = 1, 2, . . . , n and
l = 1, 2, . . . , n), (i.e., by specifying antecedent and consequent parameters {mij, σij, aijl}).
Thus, the state vector x̄(t) in (7) within ktf ≤ t ≤ (k+1)tf can be calculated. Therefore,
the optimal values of antecedent and consequent parameters {mij, σij, aijl} for the TS
fuzzy model can be obtained by directly minimizing the following RMSE performance
index:

J =

[
q∑

k=0

(xk+1 − x̄k+1)
2

q

] 1
2

, (16)

where q denotes the number of sampling data with time interval tf in the design period
T , xk+1 is the response of the nonlinear HIV dynamics, and x̄k+1 denotes the response of
its TS fuzzy model. Here, the approximation error between the nonlinear HIV dynamics
and its TS fuzzy model has been minimized.

That is, the value of the performance index in (16) actually depends on the set of
antecedent and consequent parameters {mij, σij, aijl} (i = 1, 2, . . . , N, j = 1, 2, . . . , n and
l = 1, 2, . . . , n); therefore,

J = f(m11,m21, . . . ,mNn, σ11, σ21, . . . , σNn, a111, a112, . . . , aNnn). (17)

Hence, the design problem in the TS fuzzy model of nonlinear HIV dynamics is to optimize
the set {mij, σij, aijl} such that the performance index in (17) is minimized. This design
problem is equivalent to the following static optimization problem:

minimize J = f(m11,m21, . . . ,mNn, σ11, σ21, . . . , σNn, a111, a112, . . . , aNnn). (18)

subject to mij ≤ mij ≤ m̄ij, σij ≤ σij ≤ σ̄ij and aijl ≤ aijl ≤ āijl, for i = 1, 2, . . . , N ,
j = 1, 2, . . . , n and l = 1, 2, . . . , n, wheremij, m̄ij, σij, σ̄ij, aijl and āijl are the values in the
actual implementation, respectively. Therefore, the SCSA greatly simplifies the problem
of designing TS fuzzy models of nonlinear HIV dynamics by converting the problem into
a static optimization problem represented by algebraic equations. The HTGA described
below then searches for the optimal solution for the static optimization problem in (18),
where (18) is a nonlinear function with continuous variables.

The HTGA combines the traditional genetic algorithm (TGA) [47] with the Taguchi
method [48-50]. In the HTGA, the Taguchi method is inserted between the crossover
and mutation operations of a TGA. Two major Taguchi tools (signal-to-noise ratio and
orthogonal arrays) incorporate the systematic reasoning capability of the Taguchi method
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into the crossover operations for systematically selecting optimal genes for crossover oper-
ations, which enhances the genetic algorithms. The detailed steps of the HTGA are given
below. For a detailed description of the Taguchi method, see Taguchi et al. [48] and Wu
[49]. For details regarding the HTGA, see Tsai et al. [42,43], Ho et al. [44] and Ho and
Chang [45].
Detailed Steps: HTGA

Step 1: Set parameters.
Input: population size M , crossover rate pc, mutation rate pm and number of

generations.
Output: the set of V = {m11,m21, . . . ,mNn, σ11, σ21, . . . , σNn, a111, a112, . . . , aNnn}

and the value of J in (16).
Step 2: Initialize. By using the J in (16), which is the fitness function defined for the

HTGA, calculate the fitness values of the initial population, where the randomly
generated initial population has chromosomes in the form V = {m11,m21, . . . ,mNn,
σ11, σ21, . . . , σNn, a111, a112, . . . , aNnn} for the problem in (18).

Step 3: Perform selection operation using roulette wheel approach.
Step 4: Perform crossover operation. The probability of the crossover is determined by

the crossover rate pc.
Step 5: Select a suitable two-level orthogonal array Lγ (2

γ−1) for the matrix experiments,
where γ denotes the number of experimental runs, and γ − 1 is the number of
columns in the orthogonal array. The orthogonal array L128 (2

127) is used in the
illustrative results given in the next section.

Step 6: Randomly choose two chromosomes at a time to execute the matrix experiments.
Step 7: Calculate the fitness values of the γ experiments in the orthogonal array Lγ (2

γ−1)
by using (16).

Step 8: Calculate the effects of the various factors.
Step 9: Generate one optimal chromosome based on the results from Step 8.

Step 10: Repeat Steps 6 through 9 until the expected number M × pc has been met.

Step 11: Generate the population via Taguchi method.

Step 12: Perform mutation operation. The probability of mutation is determined by mu-
tation rate pm.

Step 13: Generate offspring population.

Step 14: Sort the fitness values in increasing order among the parent and offspring pop-
ulations.

Step 15: Select the better M chromosomes as the parents of the next generation.

Step 16: Determine whether the stopping criterion has been met. If so, go to Step 17.
Otherwise, return to Step 3 and continue through Step 16.

Step 17: Calculate the RMSE performance index in (16) and check if the specified stop-
ping condition has been met. If so, go to Step 18. Otherwise, return to Step 2
and continue through Step 17.

Step 18: Display the optimal chromosome and the optimal fitness value.

3. Illustrative Example. Consider the following three-dimensional model of nonlinear
HIV dynamics [8,51]:

ẋ1(t) = S − dx1(t)− βx1(t)x3(t), (19a)

ẋ2(t) = βx1(t)x3(t)− µ1x2(t), (19b)

ẋ3(t) = kx2(t)− µ2x3(t), (19c)
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where x1(t) denotes amount (quantity) of healthy CD4+ T cells, x2(t) denotes the infected
CD4+ T cells, x3 (t) denotes the viral load, and the positive constants S, d, β, µ1, k and
µ2 denote the system parameters for an HIV dynamical model described as the rate of
production of the healthy cells, the death rate of the health calls, the infection rate of
healthy cells CD4 by virus HIV, the death rate of infected cells, the rate of production
of free virus, and the death rate of free virus, respectively. Equation (1a) denotes the
population dynamics of the healthy cells. In the presence of HIV, the healthy cells interact
with the virus, and its reproduction rate decreases according to the term −βx1(t)x3(t).
Equation (1b) denotes the population dynamics of the infected cells. The growth of
infected cells is proportional to the number of healthy cells infected by the virus, and
is discounted by the number of cells destroyed −µ1x2(t). Equation (1c) represents the
dynamics of the free virus concentration. The free virus increases in proportion to the
infected cells kx2(t) and the increase is determined by the natural decline rate −µ2x3(t)
[13]. Here, the assumptions are x1(t) ∈ [0.94, 1.0], x2(t) ∈ [0.2, 0.27] and x3(t) ∈ [0.8, 0.83].
The system parameters in this example are set as follows: S = 1, d = 0.8, β = 1, µ1 = 0.8,
k = 1 and µ2 = 0.01078 [8].

Based on the TS fuzzy model approach (Tanaka and Wang, 2001), the nonlinear HIV
dynamics in (19) can be represented by the following TS fuzzy model with eight fuzzy
rules:

R1 : IF x̄1(t) is M11 and x̄2(t) is M12 and x̄3(t) is M13,

THEN ˙̄x(t) = A1x̄(t), (20a)

R2 : IF x̄1(t) is M21 and x̄2(t) is M22 and x̄3(t) is M23,

THEN ˙̄x(t) = A2x̄(t), (20b)

R3 : IF x̄1(t) is M31 and x̄2(t) is M32 and x̄3(t) is M33,

THEN ˙̄x(t) = A3x̄(t), (20c)

R4 : IF x̄1(t) is M41 and x̄2(t) is M42 and x̄3(t) is M43,

THEN ˙̄x(t) = A4x̄(t), (20d)

R5 : IF x̄1(t) is M51 and x̄2(t) is M52 and x̄3(t) is M53,

THEN ˙̄x(t) = A5x̄(t), (20e)

R6 : IF x̄1(t) is M61 and x̄2(t) is M62 and x̄3(t) is M63,

THEN ˙̄x(t) = A6x̄(t), (20f)

R7 : IF x̄1(t) is M71 and x̄2(t) is M72 and x̄3(t) is M73,

THEN ˙̄x(t) = A7x̄(t), (20g)

R8 : IF x̄1(t) is M81 and x̄2(t) is M82 and x̄3(t) is M83,

THEN ˙̄x(t) = A8x̄(t), (20h)

with initial condition [x̄1(0) x̄2(0) x̄3(0)] = [1 0.2 0.8], where x̄(t) = [x̄1(t), x̄2(t),

x̄3(t)]
T, Ai =

 ai11 ai12 ai13
ai21 ai22 ai23
ai31 ai32 ai33

 (i = 1, 2, . . . , 8), and the Mij (i = 1, 2, . . . , 8 and

j = 1, 2, 3) is the antecedent fuzzy set defined as

M11(x̄1(t)) = M21(x̄1(t)) = M31(x̄1(t)) = M41(x̄1(t)) = exp

(
− [x̄1(t)−m11]

2

2σ2
11

)
,
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M51(x̄1(t)) = M61(x̄1(t)) = M71(x̄1(t)) = M81(x̄1(t)) = exp

(
− [x̄1(t)−m21]

2

2σ2
21

)
,

M12(x̄2(t)) = M22(x̄2(t)) = M52(x̄2(t)) = M62(x̄2(t)) = exp

(
− [x̄2(t)−m12]

2

2σ2
12

)
,

M32(x̄2(t)) = M42(x̄2(t)) = M72(x̄2(t)) = M82(x̄2(t)) = exp

(
− [x̄2(t)−m22]

2

2σ2
22

)
,

M13(x̄3(t)) = M33(x̄3(t)) = M53(x̄3(t)) = M73(x̄3(t)) = exp

(
− [x̄3(t)−m13]

2

2σ2
13

)
,

M23(x̄3(t)) = M43(x̄3(t)) = M63(x̄3(t)) = M83(x̄3(t)) = exp

(
− [x̄3(t)−m23]

2

2σ2
23

)
.

Thus, the total number of antecedent and consequent parameters {m11,m21,m12,m22,
m13,m23, σ11, σ21, σ12, σ22, σ13, σ23, a111, a112, . . . , a833} to be found is 84.
The RMSE performance index is

J =

[
q∑

k=0

(xk+1 − x̄k+1)
2

q

] 1
2

(21)

with time interval tf = 0.01 in the design period T ∈ [0, 0.1], in which q = 10.
Next, the proposed method is used to construct the TS fuzzy model in (20) by inte-

grating SCSA with HTGA such that RMSE performance index in (21) is minimized. In
the evolutionary environments of the proposed HTGA: population size is 200, crossover
rate is 0.8, mutation rate is 0.1, and generation number is 100.

Table 1. Ranges of antecedent and consequent parameters

Parameters Range

Antecedent parameters

m11 0.94-0.97
m12 0.97-1
m21 0.2-0.235
m22 0.235-0.27
m31 0.8-0.815
m32 0.815-0.83
σuj 1-12

(j = 1, 2, 3 and u = 1, 2)

Consequent parameters
aijl −12-12

(i = 1, 2, . . . , 8, j = 1, 2, 3 and l = 1, 2, 3)

After using the proposed integrative method to execute five independent runs with
m = 4,muj ≤ muj ≤ m̄uj, σuj ≤ σuj ≤ σ̄uj and aijl ≤ aijl ≤ āijl (i = 1, 2, . . . , 8, j = 1, 2, 3,
l = 1, 2, 3 and u = 1, 2), in which the values of muj, m̄uj, σuj, σ̄uj, aijl and āijl are the
antecedent and consequent parameter ranges {muj, σuj, aijl} given in Table 1, the mean
RMSE performance index is 0.0009, the standard deviation of RMSE performance indices
is 0.0002, the minimal (optimal) RMSE performance index J is 0.0005, and the optimal
antecedent and consequent parameters {m11,m21,m12,m22,m13,m23, σ11, σ21, σ12, σ22, σ13,
σ23, a111, a112, . . . , a833} are as shown in Table 2. Figure 1 shows the average and optimal
convergence results of RMSE performance index J with respect to the number of gener-
ations in five independent runs obtained by using HTGA in the TS fuzzy model of HIV
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Table 2. Optimal antecedent and consequent parameters

Optimal antecedent parameters
m11 = 0.950 σ11 = 6.097
m12 = 0.984 σ12 = 2.221
m21 = 0.215 σ21 = 6.327
m22 = 0.247 σ22 = 5.468
m31 = 0.810 σ31 = 2.071
m32 = 0.812 σ32 = 7.004

Optimal consequent parameters
a111 = −2.340 a112 = 2.895 a113 = 2.099 a121 = 2.366 a122 = −9.352 a123 = 6.005
a131 = 7.048 a132 = 1.778 a133 = −12.000 a211 = −2.429 a212 = −2.979 a213 = 5.121
a221 = −2.263 a222 = −8.359 a223 = −1.936 a231 = −10.975 a232 = −7.230 a233 = 11.995
a311 = −4.926 a312 = 7.925 a313 = −6.907 a321 = −2.448 a322 = 2.581 a323 = 9.598
a331 = −3.742 a332 = −10.243 a333 = 7.381 a411 = −8.334 a412 = −4.823 a413 = −3.117
a421 = 3.536 a422 = −1.098 a423 = 12.000 a431 = −2.692 a432 = 0.043 a433 = 5.874
a511 = 2.402 a512 = 9.521 a513 = −10.700 a521 = 10.889 a522 = −2.900 a523 = −4.874
a531 = −12.000 a532 = −4.428 a533 = 12.000 a611 = 9.594 a612 = 5.758 a613 = 7.194
a621 = −8.779 a622 = −9.451 a623 = −0.135 a631 = 6.981 a632 = −4.799 a633 = 9.664
a711 = 8.203 a712 = −9.764 a713 = −5.746 a721 = 3.473 a722 = 4.801 a723 = 4.819
a731 = 11.099 a732 = −1.811 a733 = 0.644 a811 = −4.600 a812 = 6.515 a813 = 5.151
a821 = −12.000 a822 = −3.697 a823 = −5.504 a831 = −9.528 a832 = 9.108 a833 = −11.854
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Figure 1. Average and optimal convergence results for performance index
in five independent runs of HTGA in the TS fuzzy model of HIV dynamics

dynamics in (20). The results show that the integration of HTGA efficiently finds robust
and stable solutions.

Figures 2-4, respectively, show the responses for the number of healthy CD4+ T cells
x1(t) and x̄1(t), for infected CD4+ T cells x2(t) and x̄2(t), and for viral load x3(t) and x̄3(t)
for the nonlinear HIV dynamics in (19) and its TS fuzzy model in (20) when applying the



1448 W.-H. HO

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.94

0.95

0.96

0.97

0.98

0.99

1

Time (sec)

A
m

ou
nt

 o
f h

ea
lth

y 
C

D
4+

 T
 c

el
ls

Response of the nonlinear HIV dynamics
Response of the TS fuzzy model

Figure 2. Illustrative responses of nonlinear HIV dynamics and its TS
fuzzy model for amount of healthy CD4+ T cells x1(t) and x̄1(t) when
using proposed integrative method
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Figure 3. Illustrative responses of nonlinear HIV dynamics and its TS
fuzzy model for amount of infected CD4+ T cells x2(t) and x̄2(t) when
using proposed integrative method
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Figure 4. Illustrative responses nonlinear HIV dynamics and its TS fuzzy
model for viral load x3(t) and x̄3(t) when using the proposed integrative
method

proposed integrative method. Figures 2-4 and the RMSE performance index J shows that
the proposed method of integrating SCSA with HTGA obtains satisfactorily responsive
results.

4. Conclusions. Based on the SCSA, this study developed an algebraic algorithm for
solving TS fuzzy model-based dynamic equations. The proposed algorithm is integrated
with HTGA to construct a TS fuzzy model of nonlinear HIV dynamics in which the RMSE
performance index is directly minimized. Using SCSA converts the problem of designing a
TS fuzzy model of nonlinear HIV dynamics into a static parameter optimization problem
represented by algebraic equations. Limiting the algorithm to algebraic computation
substantially simplifies the design of TS fuzzy models of nonlinear HIV dynamics. By
integrating SCSA with HTGA, the proposed method is non-differential, non-integral,
efficient, and suitable for computer implementation. The illustrative example confirmed
the effectiveness of the proposed integrated model.
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