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Abstract The Fréchet and limiting second-order subdifferentials of a proper lower
semicontinuous convex function ϕ : R

n → R̄ have a property called the positive
semi-definiteness (PSD)—in analogy with the notion of positive semi-definiteness
of symmetric real matrices. In general, the PSD is insufficient for ensuring the
convexity of an arbitrary lower semicontinuous function ϕ. However, if ϕ is a C1,1

function then the PSD property of one of the second-order subdifferentials is a
complete characterization of the convexity of ϕ. The same assertion is valid for C1

functions of one variable. The limiting second-order subdifferential can recognize
the convexity/nonconvexity of piecewise linear functions and of separable piecewise
C2 functions, while its Fréchet counterpart cannot.
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1 Introduction

Convexity of functions and sets plays a remarkable role in economics, management
science, and mathematical theories (functional analysis, optimization theory, etc.).
Therefore the study of convex functions and other concepts related to convexity are
important from both the theoretical and practical points of view.

First-order characterizations for the convexity of extended-real-valued functions
via the monotonicity of the Fréchet derivative (when it exists!) and the monotonicity
of the Fréchet subdifferential mapping or the limiting subdifferential mapping can be
found, e.g., in [7, 24] and [16, Theorem 3.56]. The convexity can be characterized also
by using first-order directional derivatives; see e.g. [7] and the references therein.

The simplest and the most useful second-order characterization of convexity of
real-valued functions is the theorem (see for instance [20, 24]) saying that a C2

function ϕ : R
n → R is convex if and only if for every x ∈ R

n the Hessian ∇2 f (x) is
a positive semidefinite matrix. Relaxing the assumption on the C2 smoothness of the
function under consideration, several authors have characterized the convexity by
using various kinds of generalized second-order directional derivatives. We refer the
reader to [1, 4, 6, 9, 10, 25, 26] for many interesting results obtained in this direction.

Although the Fréchet and/or the limiting second-order subdifferential mappings
have a significant role in variational analysis and its applications [5, 13–17, 19],
it seems to us that their use in characterizing convexity of extended-real-valued
functions has not been studied, so far. The purpose of this paper is to find out to
which extent the convexity can be characterized by these second-order subdif ferential
mappings.

We will see that the Fréchet and limiting second-order subdifferentials of a proper
lower semicontinuous convex function ϕ : R

n → R = [−∞, +∞] have a property
called the positive semi-definiteness (PSD)—in analogy with the notion of positive
semi-definiteness of symmetric real matrices. In general, the PSD is insufficient for
ensuring the convexity of an arbitrary lower semicontinuous function ϕ. However, if
ϕ is a C1,1 function then the PSD property of one of the second-order subdifferentials
is a complete characterization of the convexity of ϕ. The same assertion is valid for
C1 functions of one variable. The limiting second-order subdifferential can recognize
the convexity/nonconvexity of piecewise linear functions and of separable piecewise
C2 functions, while its Fréchet counterpart cannot. The obtained results are analyzed
and illustrated by suitable examples.

Since strong convexity of functions and the related concept of strongly monotone
operators have various applications in theory of algorithms (see e.g. [24]) and
stability theory of optimization problems and variational inequalities (see e.g.
[2, 11, 12, 27, 28]), by using the Fréchet and limiting second-order subdifferentials
we will give some necessary and sufficient conditions for strong convexity.

The rest of the paper has five sections. Section 2 presents some basic definitions of
variational analysis [16]. Section 3 describes a necessary condition for the convexity
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of a real-valued function by its Fréchet and limiting second-order subdifferentials. In
Section 4, we establish second-order sufficient conditions for the convexity of real-
valued functions from the following classes: (i) C1,1 functions, (ii) C1 functions of
one variable, (iii) Piecewise linear functions, (iv) Separable piecewise C2 functions.
Characterizations of strong convexity are obtained in Section 5, while questions
requiring further investigations are stated in Section 6.

2 Basic Definitions

We begin with some notions from [16] which will be needed in the sequel. For a
set-valued mapping F : R

m ⇒ R
n,

Lim sup
x→x̄

F(x) :=
{

x∗ ∈ R
n
∣∣∣ ∃ sequences xk → x̄ and x∗

k → x∗

with x∗
k ∈ F(xk) for all k ∈ IN

}

denotes the sequential Painlevé–Kuratowski upper limit of F as x → x̄. The symbols

x
�→ x̄ and x

ϕ→ x̄ mean that x → x̄ with x ∈ � and x → x̄ with ϕ(x) → ϕ(x̄) for a set
� ⊂ R

n and an extended-real-valued function ϕ : R
n → R, respectively. Denote by

N (x) the collection of the neighborhoods of x ∈ R
n, by clA the closure of A ⊂ R

n,

and by IB(x, ε) the open ball centered at x with radius ε > 0.

Definition 2.1 Let ϕ : R
n → R be finite at x̄ ∈ R and let ε � 0. The ε−subdif ferential

of ϕ at x̄ is the set ∂̂εϕ(x̄) defined by

∂̂εϕ(x̄) :=
{

x∗ ∈ R
n | lim inf

x→x̄

ϕ(x) − ϕ(x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ � −ε

}
.

We put ∂̂εϕ(x̄) = ∅ if |ϕ(x̄)| = ∞. When ε = 0 the set ∂̂0ϕ(x̄), denoted by ∂̂ϕ(x̄),
is called the Fréchet subdif ferential of ϕ at x̄. The limiting subdif ferential (or
Mordukhovich subdif ferential) of ϕ at x̄ is given by

∂ϕ(x̄) := Lim sup
x→x̄; ε↓0

∂̂εϕ(x),

where “Limsup” stands for the sequential Painlevé–Kuratowski upper limit of the
set-valued mapping F : R

n × [0, ∞) ⇒ R
n given by F(x, ε) := ∂̂εϕ(x).

It is clear that ∂̂ϕ(x̄) ⊂ ∂ϕ(x̄) and ∂̂ϕ(x̄) is a closed convex set (may be empty). The
examples given in [16] show that ∂ϕ(x̄) is nonconvex in general (for instance, ∂ϕ(0) =
{−1, 1} for ϕ(x) = −|x|, x ∈ R). One say that ϕ is lower regular at x̄ if ∂̂ϕ(x̄) = ∂ϕ(x̄).

If ϕ is convex and ϕ(x̄) is finite, then [16] it holds

∂ϕ(x̄) = ∂̂ϕ(x̄) = {
x∗ ∈ R

n | 〈x∗, x − x̄〉 ≤ ϕ(x) − ϕ(x̄) ∀x ∈ R
n} .

If ϕ is continuously differentiable at x̄, then ∂ϕ(x̄) = ∂̂ϕ(x̄) = {∇ϕ(x̄)} (see [16]).
Thus, convex functions and C1 functions are lower regular at any point in their
effective domains.
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Definition 2.2 The Fréchet normal cone and the Mordukhovich normal cone to � ⊂
R

n at x are defined, respectively, by N̂(x; �) := ∂̂δ(x; �) and N(x;�) := ∂δ(x; �),

where δ(x; �) = 0 if x ∈ � and δ(x; �) = ∞ if x /∈ � is the indicator function of �.

From the definition it follows that x∗ ∈ N̂(x; �) if and only if

lim sup
u

�→x

〈x∗, u − x〉
‖u − x‖ ≤ 0.

Let F : R
n ⇒ R

m be a set-valued mapping with the graph

gph F := {(x, y) ∈ R
n × R

m | y ∈ F(x)}.

Definition 2.3 The Mordukhovich coderivative D∗ F(x̄, ȳ) : R
m ⇒R

n and the Fréchet
coderivative D̂∗ F(x̄, ȳ) : R

m ⇒ R
n of F at (x̄, ȳ) ∈ gph F are defined respectively by

D∗ F(x̄, ȳ)(y∗) := {
x∗ ∈ R

n
∣∣ (x∗,−y∗) ∈ N((x̄, ȳ); gph F)

}

and

D̂∗ F(x̄, ȳ)(y∗) := {
x∗ ∈ R

n
∣∣ (x∗, −y∗) ∈ N̂((x̄, ȳ); gph F)

}
.

We omit ȳ = f (x̄) in the above coderivative notions if F = f : R
n → R

m is single-
valued.

If f : R
n → R

m is strictly dif ferentiable at x̄ in the sense that

lim
x,u→x̄

f (x) − f (u) − 〈∇ f (x̄), x − u〉
‖x − u‖ = 0,

where ∇ f (x̄) is the Fréchet derivative of f at x̄, then

D∗ f (x̄)(y∗) = D̂∗ f (x̄)(y∗) = {∇ f (x̄)∗y∗} for all y∗ ∈ R
m.

These formulae show that the coderivatives under consideration are two appropriate
extensions of the adjoint derivative operator of real-valued functions to the case of
set-valued maps.

Having a rich calculus supported by effective characterizations of Lipschitzian
and related properties of set-valued mappings, the coderivatives have become one
of the most remarkable notions in modern variational analysis; see [16, 21] and refer-
ences therein. One can use coderivatives to construct the second-order generalized
differential theory of extended-real-valued functions. Such approaches were initiated
in Mordukhovich [14].

Definition 2.4 Let ϕ : R
n → R be a function with a finite value at x̄.

(i) For any ȳ ∈ ∂ϕ(x̄), the map ∂2ϕ(x̄, ȳ) : R
n ⇒ R

n with the values

∂2ϕ(x̄, ȳ)(u) = (D∗∂ϕ)(x̄, ȳ)(u) (u ∈ R
n)

is said to be the limiting second-order subdif ferential of ϕ at x̄ relative to ȳ.

(ii) For any ȳ ∈ ∂̂ϕ(x̄), the map ∂̂2ϕ(x̄, ȳ) : R
n ⇒ R

n with the values

∂̂2ϕ(x̄, ȳ)(u) = (D̂∗∂̂ϕ)(x̄, ȳ)(u) (u ∈ R
n)

is said to be the Fréchet second-order subdif ferential of ϕ at x̄ relative to ȳ.
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Clearly, if ϕ is lower regular at any point in a neighborhood of x̄ ∈ R
n and ȳ ∈

∂̂ϕ(x̄), then ∂̂2ϕ(x̄, ȳ)(u) ⊂ ∂2ϕ(x̄, ȳ)(u) for all u ∈ R
n.

If ϕ is a C2 function around x̄ (i.e., ϕ is twice continuously differentiable in a
neighborhood of the point) then

∂2ϕ(x̄)(u) = ∂̂2ϕ(x̄)(u) = {
(∇2ϕ(x̄))∗u

} ∀u ∈ R
n,

where (∇2ϕ(x̄))∗ is the adjoint operator of the Hessian ∇2ϕ(x̄). Various properties
and calculus rules for the limiting second-order subdifferential can be found in
[16, 17].

Definition 2.5 (see [18] and [21, Chap. 12]) One says that a set-valued map T : R
n ⇒

R
n is a monotone operator if

〈x∗ − y∗, x − y〉 ≥ 0 for all x, y ∈ R
n, x∗ ∈ T(x), y∗ ∈ T(y).

A monotone operator T is said to be maximal monotone if its graph gphT is not a
proper subset of the graph of any other monotone operator.

We refer to [18, 20, 21] for detailed information on maximal operators and their
applications.

In analogy with positive semi-definiteness and positive definiteness of real matri-
ces, one can consider the following concepts.

Definition 2.6 A set-valued map T : R
n ⇒ R

n is positive semi-def inite (PSD for
brevity) if 〈z, u〉 ≥ 0 for any u ∈ R

n and z ∈ T(u). If 〈z, u〉 > 0 whenever u ∈ R
n \ {0}

and z ∈ T(u), then T is said to be positive def inite.

In [19, Theorem 1.3], Poliquin and Rockafellar have proved that the positive
definiteness of the limiting second-order subdifferential mapping ∂2ϕ(x̄, 0) : R

n ⇒
R

n characterizes the tilt stability of a stationary point x̄ of a function ϕ : R
n →

R (provided that ϕ has some required properties). Later, Levy, Poliquin and
Rockafellar [13, Theorem 2.3] have shown that the positive definiteness of a para-
metric limiting second-order subdifferential mapping can be used to study the full
stability [13, Def. 1.1] of local optimal points. For the sake of completeness, we
observe that by [21, Corollary 8.47(a)] the set ∂ϕ(x̄) of the (general) subgradients
of ϕ at x̄ defined in [19, p. 288] coincides with the limiting subdifferential ∂ϕ(x̄) in
Definition 2.1. Note in addition that the subgradient mapping of ϕ in [13, p. 583] is
the same as the limiting subdifferential mapping x �→ ∂ϕ(x) given by Definition 2.1.

3 Second-Order Necessary Conditions

Theorem 3.2 below gives a necessary condition for the convexity of a function ϕ :
R

n → R̄ via its limiting second-order subdifferential mapping. For proving it, we shall
need an auxiliary result.

Lemma 3.1 ([19, Theorem 2.1]) If T : R
n ⇒ R

n is a maximal monotone operator,
then for every point (x, y) ∈ gphT it holds

〈z, u〉 ≥ 0 whenever z ∈ D∗T(x, y)(u),
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i.e., the coderivative mapping D∗T(x, y) : R
n ⇒ R

n is positive semi-def inite.

Theorem 3.2 Let ϕ : R
n → R be proper lower semicontinuous. If ϕ is convex, then

〈z, u〉 ≥ 0 for all u ∈ R
n and z ∈ ∂2ϕ(x, y)(u) with (x, y) ∈ gph∂ϕ; (3.1)

that is, for every (x, y) ∈ gph∂ϕ, the mapping ∂2ϕ(x, y) : R
n ⇒ R

n is positive semi-
def inite.

Proof If ϕ is convex then, according to [21, Theorem 12.17], ∂ϕ : R
n ⇒ R

n is a
maximal monotone operator. Applying Lemma 3.1 to T := ∂ϕ yields

〈z, u〉 ≥ 0 for all u ∈ R
n, z ∈ D∗∂ϕ(x, y)(u) with (x, y) ∈ gph∂ϕ.

Since ∂2ϕ(x, y)(u) = D∗∂ϕ(x, y)(u) by definition, Eq. 3.1 holds. ��

Remark 3.3 Suppose that ϕ : R
n → R̄ is a proper lower semicontinuous convex

function. Then ∂̂2ϕ(x, y)(u) ⊂ ∂2ϕ(x, y)(u) and ∂2ϕ(x, y)(·) is PSD; hence ∂̂2ϕ(x, y)(·)
is also PSD:

〈z, u〉 ≥ 0 for all u ∈ R
n, z ∈ ∂̂2ϕ(x, y)(u) with (x, y) ∈ gpĥ∂ϕ. (3.2)

Thus, from Theorem 3.2 it follows that Eq. 3.2 is a second-order necessary condition
for the convexity of ϕ.

In general, the PSD property of both the second-order subdifferentials ∂2ϕ(·)
and ∂̂2ϕ(·) of a proper lower semicontinuous ϕ : R

n → R does not imply the
convexity of ϕ.

Example 3.4 Let ϕ(x) = 0 for x ∈ R \ {0} and ϕ(x) = −1 for x = 0. Note that ϕ : R →
R is lower semicontinuous on R and

∂ϕ(x) = ∂̂ϕ(x) =
{

{0} if x �= 0
R if x = 0.

Therefore, for each (x, y) ∈ gph∂ϕ, we have

∂2ϕ(x, y)(u) =

⎧
⎪⎨
⎪⎩

{z ∈ R | (z,−u) ∈ {0} × R} if x �= 0, y = 0
{z ∈ R | (z,−u) ∈ ({0} × R) ∪ (R × {0})} if x = 0, y = 0
{z ∈ R | (z,−u) ∈ R × {0}} if x = 0, y �= 0.

It follows that zu ≥ 0 for any u ∈ R and z ∈ ∂2ϕ(x, y)(u) with (x, y) ∈ gph∂ϕ. Thus
Eq. 3.1 is valid. Of course, Eq. 3.2 is also fulfilled. Nevertheless, ϕ is nonconvex.

We have seen that neither Eq. 3.1 nor Eq. 3.2 can guarantee the convexity of
ϕ. In other words, the class of the proper lower semicontinuous functions ϕ : R

n →
R̄ is too large for one’s checking their convexity by analyzing the second-order
subdifferentials ∂̂2ϕ(·) and ∂2ϕ(·).

It is interesting, however, that the PSD property of the second-order sub-
differential ∂̂2ϕ(·) (or ∂2ϕ(·)) can serve as a suf f icient condition for the convexity
if one considers smaller classes of functions. This will be clear from the results of the
forthcoming section.



Characterizing Convexity of a Function 81

4 Second-Order Sufficient Conditions

4.1 C1,1 Functions

Let Lm be the σ−algebra of the Lebesgue measurable subsets on R
m (m = 1, 2, ...).

The σ−algebra product (see [3, 22]) of L1 and Ln−1 is denoted by L1 × Ln−1. Let λ

and ν, respectively, stand for the Lebesgue measures on R and on R
n−1. We denote

the product measure (see [3, 22]) of λ and ν by λ × ν, and the Lebesgue measure on
R

n by μ.

Lemma 4.1 Suppose that �0 ∈ Ln, μ(Rn\�0) = 0, and a, b ∈ R
n are distinct points.

Then there exist sequences of vectors ak → a and b k → b such that

λ
({

t ∈ [0, 1] | ak + t(b k − ak) ∈ �0
}) = 1 (∀k ∈ N).

Proof Put ẽ1 := ‖b − a‖−1(b − a) and choose {ẽi}n
i=2 such that {ẽ1, ẽ2, ...., ẽn} is an

orthonormal basis of R
n. Denote by 
 the linear operator from R

n to R
n satisfying


(ei) = ẽi, i = 1, 2, ..., n, where ei is the i−th unit vector in R
n. If a =

n∑
i=1

αiẽi then

b = a + ‖b − a‖ẽ1 = (α1 + ‖b − a‖)ẽ1 +
n∑

i=2

αiẽi.

For each k ∈ N, let

Ak :=
{

x =
n∑

i=1

xiẽi | x1 ∈ [α1, α1 + ‖b − a‖], xi ∈ [
αi, αi + k−1], i = 2, 3, ..., n

}
.

We have


−1(Ak) = [α1, α1 + ‖b − a‖] × [
α2, α2 + k−1] × ... × [

αn, αn + k−1].

Since 
 is a linear isometry, μ(
−1(A))=μ(A) for any A∈Ln;see [23, Theorem 5.2,
p. 140]. In particular,

μ
(
R

n\
−1(�0)
) = μ

(

−1(Rn\�0)

) = μ(Rn\�0) = 0.

Hence

μ(M̃) = μ(U × V) = k1−n‖b − a‖,
where U = [α1, α1 + ‖b − a‖], V = [

α2, α2 + k−1
] × ... × [

αn, αn + k−1
]
, and M̃ =

(U × V) ∩ 
−1(�0). Since μ is the completion of the product measure λ × ν (see [22,
Theorem 7.11]), there exists M ∈ L1 × Ln−1 satisfying M ⊂ M̃ and μ(M) = μ(M̃).

Since μ(M) = (λ × ν)(M), we have

(λ × ν)(M) = μ(M̃) = k1−n‖b − a‖. (4.1)
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Define Mv = {u ∈ R | (u, v) ∈ M}, f (u, v) = χM(u, v) where χM(·) denotes the
characteristic function of M, and fv(u) = f (u, v) for all (u, v) ∈ U × V. Note that
fv(u) = χMv

(u). We can find vk ∈ V such that λ(Mvk) = ‖b − a‖. Indeed, by the
Fubini theorem ([22, Theorem 7.8],[3, Theorem 5.2.2])

(λ × ν)(M) = ∫
Rn

f (u, v)d(λ × ν)(u, v) = ∫
V

dν(v)
∫
U

fv(u)dλ(u)

= ∫
V

dν(v)
∫

Mv

dλ(u) = ∫
V

λ(Mv)dν(v)

≤ ‖b − a‖ν(V) = k1−n‖b − a‖.

Thus, by Eq. 4.1, the last inequality must hold as an equality. Since λ(Mv) ≤ ‖b − a‖
for all v ∈ V, this implies λ(Mv) = ‖b − a‖ for almost all v ∈ V. Let

ak := 
(α1, v
k) and b k := 
(α1 + ‖b − a‖, vk).

Then

λ
({

t ∈ [0, 1] | ak + t(b k − ak) ∈ �0
}) = λ

({
t ∈ [0, 1] | 
(α1 + t‖b − a‖, vk) ∈ �0

})

≥ ‖b − a‖−1λ(Mvk) = 1.

It follows that λ
({

t ∈ [0, 1] | ak + t(b k − ak) ∈ �0
}) = 1. As

vk ∈ V = [
α2, α2 + k−1] × ... × [

αn, αn + k−1],

it holds lim
k→∞

vk = (α2, ..., αn). Hence ak → a and b k → b . ��

As usual [16, p. 123], we say that ϕ : R
n → R is a C1,1 function if ϕ is Fréchet

differentiable and its derivative ∇ϕ(·) is locally Lipschitz. The class of C1,1 functions
encompasses the class of C2 functions. The formula ϕ(x) = x|x| defines a C1,1

function on R, which is not a C2 function.
In combination with Remark 3.3, the next statement shows that the PSD property

of the Fréchet second-order subdifferential mapping provides a complete character-
ization for convexity of C1,1 functions.

Theorem 4.2 Let ϕ : R
n → R be a C1,1 function. If the condition 3.2 is fulf illed, then

ϕ is convex.

Proof Suppose that ϕ is a C1,1 function and 〈z, u〉 ≥ 0 for all u ∈ R
n, z ∈ ∂̂2ϕ(x, y)(u)

with (x, y) ∈ gpĥ∂ϕ. Since ϕ is Fréchet differentiable, ∂̂ϕ(x) = {∇ϕ(x)} for all x ∈ R
n.
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If ϕ is twice differentiable at x, then ∇2ϕ(x)∗u ∈ ∂̂2ϕ(x, ∇ϕ(x))(u) for every u ∈ R
n.

Indeed, we have

lim sup
x̃→x

〈∇2ϕ(x)∗u, x̃ − x〉 − 〈u,∇ϕ(x̃) − ∇ϕ(x)〉
‖x̃ − x‖ + ‖∇ϕ(x̃) − ∇ϕ(x)‖

≤ lim sup
x̃→x

max
{

0,
〈∇2ϕ(x)∗u, x̃ − x〉 − 〈u,∇ϕ(x̃) − ∇ϕ(x)〉

‖x̃ − x‖
}

= lim sup
x̃→x

max
{

0,
〈−u, ∇ϕ(x̃) − ∇ϕ(x) − ∇2ϕ(x)(x̃ − x)〉

‖x̃ − x‖
}

= 0.

This means that ∇2ϕ(x)∗u ∈ D̂∗∇ϕ(x)(u). Hence

∇2ϕ(x)∗u ∈ ∂̂2ϕ(x, ∇ϕ(x))(u) (4.2)

for all u ∈ R
n, provided that ϕ is twice differentiable at x. Put

�0 = {x ∈ R
n | ϕ is twice differentiable at x}.

Since ∇ϕ(·) : R
n → R

n is Lipschitz continuous, by the Rademacher theorem we have
�0 ∈ Ln and μ(Rn\�0) = 0. We will prove that

〈∇ϕ(y) − ∇ϕ(x), y − x〉 ≥ 0 ∀x, y ∈ R
n. (4.3)

It can be supposed that ∇ϕ is Lipschitz with modulus 
 on ĪB([x, y]; 2). By Lemma 4.1
there exist sequences xk → x and yk → y such that

λ
({

t ∈ [0, 1] | xk + t(yk − xk) ∈ �0
}) = 1.

Without loss of generality we can assume that xk, yk ∈ ĪB([x, y]; 2) for all k. Applying
the Newton–Leibniz formula to f (t) := 〈∇ϕ(xk + t(yk − xk)), yk − xk〉, we get

〈∇ϕ(yk) − ∇ϕ(xk), yk − xk
〉 =

1∫
0

f ′(t)dt

= ∫
Tk

(yk − xk)T∇2ϕ(xk + t(yk − xk))(yk − xk)dt,

where Tk := {t ∈ [0, 1] | xk + t(yk − xk) ∈ �0}. For any t ∈ Tk,

∇2ϕ(xk + t(yk − xk))(yk − xk) ∈ ∂̂2ϕ(xk + t(yk − xk))(yk − xk)

by Eq. 4.2; hence (yk − xk)T∇2ϕ(xk + t(yk − xk))(yk − xk) ≥ 0 by our assumption.
Consequently,

〈∇ϕ(yk) − ∇ϕ(xk), yk − xk〉 ≥ 0 ∀k.

Letting k → ∞ we get Eq. 4.3. This means that ∇ϕ(·) is monotone. Hence ϕ is
convex. ��
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Remark 4.3 An equivalent formulation of Theorem 4.2 had appeared in [8] where
the Fréchet second-order subdifferential ∂̂2ϕ is replaced by the so-called general-
ized Hessian. Note that no explicit proof was given in [8]. The proof hints in [8,
Example 2.2] are based on the second-order Taylor expansion while the above proof
appeals the Newton–Leibniz formula. The two approaches are quite different.

4.2 C1 Functions of One Variable

We now establish a refined version of Theorem 4.2 in the case n = 1 which shows
that, for C1 functions of one variable, the PSD property of the Fréchet second-order
subdifferential mapping implies convexity of the given function. (Hence the PSD
property of the limiting second-order subdifferential mapping also implies convexity
of the given function.)

Theorem 4.4 Let ϕ : R
n → R, n = 1, be a C1 function. If the condition 3.2 is fulf illed,

then ϕ is convex.

Proof On the contrary, suppose that one could find a C1 function ϕ : R → R satis
fying

zu ≥ 0 for all u ∈ R, z ∈ ∂̂2ϕ(x, y)(u) with (x, y) ∈ gpĥ∂ϕ, (4.4)

but ϕ is nonconvex. Setting f (x) = ∇ϕ(x) and noting that ∂̂ϕ(x) = { f (x)}, we can use
the definitions of Fréchet second-order subdifferential and Fréchet coderivative to
rewrite Eq. 4.4 equivalently as follows

zu ≤ 0 for all (z, u) ∈ N̂((x, f (x)); gph f ) with x ∈ R. (4.5)

By [16, Theorem 3.56], since ϕ is nonconvex, the Fréchet subdifferential mapping
∂̂ϕ(·) = { f (·)} is nonmonotone. This means that there exists a pair a, b ∈ R such
that ( f (b) − f (a))(b − a) < 0. In order to obtain a fact contradicting to Eq. 4.5, we
will use the following geometrical constructions: 1. Project orthogonally the curve
� := {

(x, f (x)) : x ∈ [a, b ]} ⊂ gph f to the straight line L := {
λ
(

f (a) − f (b), b −
a
) : λ ∈ R

}
which is orthogonal to the segment

{
(1 − t)

(
a, b(a)

) + t
(
b , g(b)

) : t ∈
[0, 1]} connecting the chosen “bad points”

(
a, b(a)

)
,
(
b , g(b)

) ∈ gph f ; 2. Find the
maximal (or minimal) value λ of the obtained projections on L and a point z̄ ∈ �

corresponding to this value; 3. Define a Fréchet normal to gph f at z̄.
There is no loss of generality in assuming that b − a > 0 and f (b) − f (a) < 0. Put

w = (
f (a) − f (b), b − a

)
,

ψ(x) := 〈w, (x, f (x))〉 = (
f (a) − f (b)

)
x + (b − a) f (x)

and consider the optimization problems

ψ(x) → max s.t. x ∈ [a, b ] (4.6)

and

ψ(x) → min s.t. x ∈ [a, b ]. (4.7)

Since ψ(a) = ψ(b) and ψ is continuous on [a, b ], at least one of the problems
Eq. 4.6, Eq. 4.7 must have a global solution on the open interval (a, b).
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First, suppose that Eq. 4.6 possesses a global solution x̄ ∈ (a, b). Setting z̄ =(
x̄, f (x̄)

)
, we want to show that

w ∈ N̂(z̄; gph f ). (4.8)

By the choice of x̄, for any x ∈ (a, b) it holds

0 ≥ ψ(x) − ψ(x̄) = (
f (a) − f (b)

)
(x − x̄) + (b − a)

(
f (x) − f (x̄)

)
= 〈w, (x, f (x)) − z̄〉.

This implies

lim sup
z

gph f→ z̄

〈w, z − z̄〉
‖z − z̄‖ ≤ 0,

hence Eq. 4.8 is valid. Since both the components of w are positive, Eq. 4.8 is in
conflict with Eq. 4.5.

Now suppose that Eq. 4.7 admits a global solution x̄ ∈ (a, b). Setting z̄ = (
x̄, f (x̄)

)
,

by an argument similar to the above we can show that

−w ∈ N̂(z̄; gph f ). (4.9)

Since both the components of −w are negative, Eq. 4.9 contradicts Eq. 4.5.
Thus, in each of the two possible cases, we have obtained a contradiction. The

proof is complete. ��

The geometrical constructions used for proving Theorem 4.4 can hardly be
applicable to the case n ≥ 2. The question about whether or not the conclusion of
that theorem holds for n �= 1 remains open (see the last section).

4.3 Limiting Second-Order Subdifferential Mapping vs Fréchet Second-Order
Subdifferential Mapping

The PSD property of the Fréchet second-order subdifferential mapping is not subtle
enough to recognize the nonconvexity of a Lipschitz function.

Example 4.5 Let ε > 0 and let ϕ : R → R be defined by

ϕ(x) =

⎧
⎪⎨
⎪⎩

0 if x ∈ (−∞,−ε] ∪ [ε, +∞)

− 1
ε
x − 1 if x ∈ (−ε, 0]

1
ε
x − 1 if x ∈ (0, ε).

It is easy to verify that

∂ϕ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} if x ∈ (−∞,−ε) ∪ (ε,+∞)

{0,− 1
ε
} if x = −ε

{− 1
ε
} if x ∈ (−ε, 0)

[− 1
ε
, 1

ε
] if x = 0

{ 1
ε
} if x ∈ (0, ε)

{0, 1
ε
} if x = ε.
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For (x, y) = (ε, 0) ∈ gph∂ϕ, we find that

∂2ϕ(x, y)(u) = ∂2ϕ(ε, 0)(u) = {z ∈ R | (z,−u) ∈ (−∞, 0] × R} ∀u ∈ R.

Since zu < 0 for any u > 0 and z ∈ ∂2ϕ(ε, 0) \ {0}, the subdifferential mapping
∂2ϕ(ε, 0)(·) is not PSD. Meanwhile,

∂̂ϕ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} if x ∈ (−∞,−ε) ∪ (ε,+∞)

{∅} if x = −ε

{− 1
ε
} if x ∈ (−ε, 0)

[− 1
ε
, 1

ε
] if x = 0

{ 1
ε
} if x ∈ (0, ε)

{∅} if x = ε

and

∂̂2ϕ(x, y)(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{z ∈ R | (z,−u) ∈ {0} × R} if |x| > ε, y = 0
{z ∈ R | (z,−u) ∈ {0} × R} if 0 < x < ε, y = 1

ε

{z ∈ R | (z,−u) ∈ {0} × R} if − ε < x < 0, y = − 1
ε

{z ∈ R | (z,−u) ∈ R+ × R−} if x = 0, y = − 1
ε

{z ∈ R | (z,−u) ∈ R− × R+} if x = 0, y = 1
ε

{z ∈ R | (z,−u) ∈ R × {0}} if x = 0, − 1
ε

< y < 1
ε

for every (x, y) ∈ gpĥ∂ϕ and u ∈ R. Hence zu ≥ 0 for all u ∈ R, z ∈ ∂̂2ϕ(x, y)(u) with
(x, y) ∈ gpĥ∂ϕ. Although ϕ is Lipschitz and nonconvex, the Fréchet second-order
subdifferential mapping of ϕ has the PSD property Eq. 3.2.

As the last example showed, the limiting second-order subdifferential mapping
of ϕ does not have the PSD property (Eq. 3.1). In other words, although the
nonconvexity of ϕ remains unnoticed by examining the Fréchet second-order sub-
differential mapping, one can still recognize the nonconvexity of the function by
checking the PSD property of its limiting second-order subdifferential mapping.
Thus, the latter might be used for obtaining sufficient conditions for convexity of
locally Lipschitz functions (or even of continuous functions), while its counterpart,
the Fréchet second-order subdifferential mapping, cannot be used for the purpose.

4.4 Piecewise Linear Functions

A function ϕ : R
n → R is said to be piecewise linear (or piecewise af f ine) if there

exist families {P1, ..., Pk}, {a1, ..., ak}, and {b 1, ..., b k} of polyhedral convex sets in R
n,

points in R
n, and points in R, respectively, such that R

n =
k⋃

i=1
Pi, intPi ∩ intPj = ∅

for all i �= j, and

ϕ(x) = ϕi(x) := 〈ai, x〉 + bi ∀x ∈ Pi, ∀i ∈ {1, ..., k}. (4.10)

From Eq. 4.10 it follows that ϕi(x) = ϕ j(x) whenever x ∈ Pi ∩ Pj and i, j ∈ {1, ..., k}.

Lemma 4.6 Let A and B be two closed subsets of R
n. If intA = intB = ∅, then

int(A ∪ B) = ∅. If intA = ∅, then intB = int(A ∪ B).
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Proof To prove the first claim, suppose on the contrary that intA = intB = ∅, but
int(A ∪ B) �= ∅. For any x ∈ int(A ∪ B), there are two cases: (i) x ∈ B, (ii) x ∈ A. Let
the second case happen. Take any U ∈ N (x). Clearly, there is V ∈ N (x) satisfying
V ⊂ U and V ⊂ int(A ∪ B). Since intA = ∅ and V ⊂ A ∪ B, we must have V ∩ B �=
∅. So, U ∩ B �= ∅ for all U ∈ N (x). This means that x ∈ clB = B. Thus, in both cases,
x ∈ B. We have shown that int(A ∪ B) ⊂ B. This contradicts the fact that intB = ∅.

To prove the second claim, we first note that intB ⊂ int(A ∪ B). To obtain
the reverse inclusion under the assumption intA = ∅, we take any x ∈ int(A ∪ B).

Arguing as in the proof of the first claim, we have U ∩ B �= ∅ for all U ∈ N (x). Hence
x ∈ clB = B. This shows that int(A ∪ B) ⊂ B, and thus int(A ∪ B) ⊂ intB. ��

Lemma 4.7 For I := {i ∈ {1, 2, ..., k} | intPi �= ∅}, it holds
⋃
i∈I

Pi = R
n.

Proof Put J = {1, 2, ..., k}\I. The first assertion of Lemma 4.6 implies that
int(

⋃
j∈J

P j) = ∅. Set A = ⋃
j∈J

P j and B = ⋃
i∈I

Pi. Since Pi (i = 1, . . . , k) are closed,

according to the second claim of Lemma 4.6, intB = int(A ∪ B). It follows that

int(
⋃
i∈I

Pi) = int(
k⋃

i=1
Pi) = R

n. Hence
⋃
i∈I

Pi = R
n. ��

Lemma 4.8 Let [x, y] be an interval in R
n (x �= y), 0 = τ0 < τ1 < ... < τm−1 < τm = 1

(m ∈ IN, m > 1), and xi := x + τi(y − x) (i = 0, 1, ..., m). Suppose that ϕ is noncon-
vex and continuous on [x, y]. Then there must exist i ∈ {0, 1, ..., m − 2} such that ϕ is
nonconvex on [xi, xi+2].

Proof Replacing ϕ by the function g(t) := ϕ(x + t(y − x)) (t ∈ R) if necessary, we
can assume that n = 1 and [x, y] = [0, 1] (thus xi = τi, i = 0, 1, ..., m). Moreover, it
suffices to prove the claim for the case m = 3, because the case m = 2 is trivial, and
the case m > 3 can be treated by induction. To obtain a contradiction, suppose that
ϕ is nonconvex on [τ0, τ3] but it is convex on each one of the intervals [τ0, τ2] and
[τ1, τ3]. Take any t1, t2 ∈ (0, 1) = (τ0, τ3), t1 < t2, and ξi ∈ ∂ϕ(ti) (i = 1, 2). We will
show that ξ1 ≤ ξ2. If t2 ∈ (τ0, τ2) or t1 ∈ (τ1, τ3) then ξ1 ≤ ξ2 by the convexity of ϕ

on each one of the intervals [τ0, τ2] and [τ1, τ3] (the latter implies the monotonicity
of the subdifferential mapping ∂ϕ(·) on the corresponding interval). Suppose that
t1 ∈ (τ0, τ1] and t2 ∈ [τ2, τ3). Taking any t ∈ (τ1, τ2) and ξ ∈ ∂ϕ(t), we get ξ1 ≤ ξ and
ξ ≤ ξ2 by the above proof; so ξ1 ≤ ξ2. Thus ∂ϕ(·) is monotone on (τ0, τ3), hence ϕ is
convex on (τ0, τ3). This fact and the continuity of ϕ on [τ0, τ3] imply that ϕ is convex
on [τ0, τ3], a contradiction. ��

Theorem 4.9 Let ϕ : R
n → R be a piecewise linear function. If Eq. 3.1 holds, then ϕ

is convex.

Proof According to Lemma 4.7, we can assume that intPi �= ∅ for all i = 1, 2, ..., k.

Suppose that Eq. 3.1 holds, but ϕ is nonconvex. Consider the following two cases.
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Case 1: k = 2. Suppose that P1 = {x ∈ R
n | 〈a, x〉 ≤ α}, P2 = {x ∈ R

n | 〈a, x〉 ≥ α},
a �= 0, P12 = P1 ∩ P2, and

ϕ(x) =
{

〈a1, x〉 + b 1 if x ∈ P1

〈a2, x〉 + b 2 if x ∈ P2,

where a1, a2 ∈ R
n (a1 �= a2) and 〈a1, x〉 + b 1 = 〈a2, x〉 + b 2 for all x ∈ P12. Observe

that R
n is the union of the disjoint sets intP1, intP2, and P12. We now compute the

limiting subdifferential ∂ϕ(x).
If x ∈ intP1, then ∂ϕ(x) = ∂̂ϕ(x) = {a1}.
If x ∈ intP2, then ∂ϕ(x) = ∂̂ϕ(x) = {a2}.
Let x ∈ P12. Since ϕ is convex on each one of the sets P1 and P2 but it is nonconvex

on R
n = P1 ∪ P2, we can find x0 ∈ intP1, y0 ∈ intP2, and t1 ∈ (0, 1), such that

ϕ(z1) > (1 − t1)ϕ(x0) + t1ϕ(y0), (4.11)

where z1 := (1 − t1)x0 + t1 y0. Let t0 ∈ (0, 1) be such that z0 := (1 − t0)x0 + t0 y0 ∈
P12. We will show that

ϕ(z0) > (1 − t0)ϕ(x0) + t0ϕ(y0). (4.12)

If t0 = t1 then Eq. 4.12 follows from Eq. 4.11, because z0 = z1. If t0 ∈ (0, t1) then z1 =
(1 − λ)y0 + λz0 with λ = (1 − t1)/(1 − t0) ∈ (0, 1). Since ϕ is affine on [z0, y0] ⊂ P2,

ϕ(z1) = (1 − λ)ϕ(y0) + λϕ(z0).

Then, from Eq. 4.11 it follows that

ϕ(z0) > λ−1[(1 − t1)ϕ(x0) + t1ϕ(y0) − (1 − λ)ϕ(y0)]
= (1 − t0)ϕ(x0) + t0ϕ(y0).

This establishes Eq. 4.12. Similarly, Eq. 4.12 also holds for the case where t0 ∈ (t1, 1).

Since x0 ∈ P1, y0 ∈ P2, z0 ∈ P12,

ϕ(x0) = 〈a1, x0〉 + b 1, ϕ(y0) = 〈a2, y0〉 + b 2

and

ϕ(z0) = 〈a1, z0〉 + b 1 = 〈a2, z0〉 + b 2.

Hence, Eq. 4.12 implies

(1 − t0)(〈a1, z0〉 + b 1) + t0(〈a2, z0〉 + b 2) > (1 − t0)(〈a1, x0〉 + b 1) + t0(〈a2, y0〉 + b 2)

or, equivalently,

(1 − t0)〈a1, z0 − x0〉 + t0〈a2, z0 − y0〉 > 0.

As z0 = (1 − t0)x0 + t0 y0, we obtain

〈a1 − a2, y0 − x0〉 > 0. (4.13)

We are going to prove that ∂̂ϕ(x) = ∅. To the contrary suppose that there exists x∗ ∈
∂̂ϕ(x). Then

lim inf
u→x

ϕ(u) − ϕ(x) − 〈x∗, u − x〉
‖u − x‖ ≥ 0. (4.14)
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It is clear that u j := x − 1
j (y0 − x0) → x as j → ∞. Since 〈a, x0〉 < α, 〈a, y0〉 > α, and

〈a, x〉 = α, it holds

〈a, u j〉 = 〈a, x〉 − 1
j 〈a, y0 − x0〉

= α − 1
j [〈a, y0〉 − 〈a, x0〉] < α.

This means that u j ∈ P1 for all j ∈ IN. By Eq. 4.14,

lim inf
j→∞

〈
a1, x − 1

j (y0 − x0)
〉 + b 1 − (〈a1, x〉 + b 1) − 〈

x∗, − 1
j (y0 − x0)

〉
1
j ‖y0 − x0‖

≥ 0.

Hence

〈a1, y0 − x0〉 ≤ 〈x∗, y0 − x0〉.
Similarly, choosing u′

j = x + 1
j (y0 − x0) we have u′

j → x and u′
j ∈ P2 for all j ∈ N.

Substituting u = u′
j into Eq. 4.14 yields

〈x∗, y0 − x0〉 ≤ 〈a2, y0 − x0〉.
Thus, we obtain 〈a1 − a2, y0 − x0〉 ≤ 0, a contradiction to Eq. 4.13. Therefore,
∂̂ϕ(x) = ∅ for all x ∈ P12. We have

∂ϕ(x) = Lim sup
u→x

∂̂ϕ(u)

= Lim sup
intP1

u−→x

∂̂ϕ(u) ∪ Lim sup
intP2

u−→x

∂̂ϕ(u) ∪ Lim sup
P12

u−→x

∂̂ϕ(u)

= {a1, a2}.
Hence

∂ϕ(x) =

⎧⎪⎨
⎪⎩

{a1} if x ∈ intP1,

{a2} if x ∈ intP2,

{a1, a2} if x ∈ P12.

By a simple computation we find

∂2ϕ(x, y)(u) =

⎧⎪⎨
⎪⎩

{0} if x ∈ intP1 ∪ intP2 and y ∈ ∂ϕ(x),

R+a if x ∈ P12 and y = a1,

R−a if x ∈ P12 and y = a2

for all u ∈ R
n. Taking x ∈ P12, y = a1, z = a and u = −a, we get z ∈ ∂2ϕ(x, y)(u) and

〈z, u〉 < 0. This contradicts Eq. 3.1. We have thus shown that ϕ is a convex function.

Case 2: k > 2. Since ϕ is assumed to be a nonconvex function, there exist x, y ∈
R

n such that x �= y and ϕ is nonconvex on the line segment [x, y]. As ϕ is
piecewise linear, there exist 0 = τ0 < τ1 < ... < τm−1 < τm = 1 (m ∈ IN, m > 1), and
xi := x + τi(y − x) (i = 0, 1, ..., m) such that ϕ is affine on each interval [xi, xi+1]
(i = 0, 1, ..., m − 1). By Lemma 4.8 there exists i ∈ {0, 1, ..., m − 2} such that ϕ is
nonconvex on [xi, xi+2]. Hence, without loss of generality, we can assume that there
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exists x̄ ∈ (x, y) such that ϕ is affine on each one of the segments [x, x̄] and [x̄, y]
but it is nonconvex on [x, y]. Let t ∈ (0, 1) be such that x̄ = (1 − t)x + ty. From our
assumption it follows that

ϕ(x̄) > (1 − t)ϕ(x) + tϕ(y). (4.15)

For every u ∈ R
n, we set I(u) = {i ∈ {1, 2, ..., k} | u ∈ Pi}. Choose ε > 0 as small as

IB(x̄, ε) ∩ Pi = ∅ for all i ∈ {1, 2, ..., k}\I(x̄). We can assume that x, y ∈ IB(x̄, ε). It is
not difficult to see that |I(x̄)| ≥ 2 and x̄ �∈ intPi for all i.

If |I(x̄)| = 2 then, by using the result of Case 1, we obtain a contradiction.
If |I(x̄)| > 2 then dimL ≤ n − 2 with L := aff(

⋂
i∈I(x̄)

Pi) denoting the affine hull

of
⋂

i∈I(x̄)

Pi. Indeed, without loss of generality we may assume that {1, 2, 3} ⊂ I(x̄).

Since intPi �= ∅, intPj �= ∅ and intPi ∩ intPj = ∅, by the separation theorem we
find a hyperplane Lij separating the sets intPi and intPj (1 ≤ i < j ≤ 3). Since the
situation L12 = L13 = L23 cannot occur, dim(L12 ∩ L13 ∩ L23) ≤ n − 2. Noting that
L ⊂ (L12 ∩ L13 ∩ L23), we have dimL ≤ n − 2. In the case where y ∈ L, by invoking
the last property we can find ỹ ∈ R

n \ L as close to y as desired. Define x̃ỹ by
the condition x̄ = (1 − t)x̃ỹ + t ỹ. Clearly, x̃ỹ /∈ L and x̃ỹ → x as ỹ → y. Therefore,
according to Eq. 4.15 we can find ỹ ∈ R

n \ L such that

ϕ(x̄) > (1 − t)ϕ(x̃ỹ) + tϕ(ỹ).

Thus, replacing {x, y} by {x̃ỹ, ỹ} if necessary, we can assume that y /∈ L and x /∈ L.
(Note that such replacement may destroy the property of ϕ of being affine on each
one of the segments [x, x̄] and [x̄, y]. But this property will not be employed in the
sequel.)

Choose ρ > 0 as small as IB(y, ρ) ⊂ IB(x̄, ε), IB(y, ρ) ∩ L = ∅, x �∈ IB(y, ρ), and
ϕ is nonconvex on [x, z] for each z ∈ IB(y, ρ). We are going to show that there
exists z ∈ IB(y, ρ) such that [x, z] ∩ L = ∅. Arguing by contradiction, we suppose
that [x, z] ∩ L �= ∅ for all z ∈ IB(y, ρ). Let us choose y1, y2, ..., yn−1 ∈ IB(y, ρ) such
that the system {x − y, y1 − y, ..., yn−1 − y} is linearly independent. For every i ∈
{1, . . . , n − 1}, there is some x̄i ∈ (x, yi) ∩ L. Clearly, for each i there exist real
numbers αi and βi satisfying x̄i − x̄ = αi(x − y) + βi(yi − y). It is not difficult to show
that βi �= 0 for all i. Due to this fact and the linear independence of {x − y, y1 −
y, ..., yn−1 − y}, the system {x̄1 − x̄, ..., x̄n−1 − x̄} ⊂ L − x̄ is linearly independent.
Hence we can assert that dimL ≥ n − 1, a contradiction. We have thus proved
that there exists z ∈ IB(y, ρ) with [x, z] ∩ L = ∅. Note that [x, z] ⊂ IB(x̄, ε) and ϕ is
nonconvex on [x, z]. By Lemma 4.8 we can find [x′, y′] ⊂ [x, z] and x̄′ ∈ (x′, y′) such
that ϕ is convex on each one of the segments [x′, x̄′] and [x̄′, y′], and it is nonconvex on
[x′, y′]. Since x̄′ ∈ IB(x̄, ε)\[ ⋂

i∈I(x̄)

Pi] and IB(x̄, ε) ∩ Pi = ∅ for all i ∈ {1, 2, ..., k}\I(x̄),

we can assert that |I(x̄′)| < |I(x̄)|. Hence, if |I(x̄)| > 2 then we can find [x′, y′] and
x̄′ ∈ (x′, y′) with |I(x̄′)| < |I(x̄)| such that ϕ is convex on each one of the segments
[x′, x̄′] and [x̄′, y′], but it is nonconvex on [x′, y′]. Repeating this procedure finitely
many times we will come to the situation |I(x̄)| = 2 treated before. The proof is
complete. ��
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4.5 Piecewise C2 Functions of a Special Type

Following [17], we consider an extended-real-valued function ϕ : R → R̄ having the
form

ϕ(·) = ϑ(·) + δ(·, �), (4.16)

where δ(·, �) is the indicator function of a closed interval � := [α, β] ⊂ R̄ (the
possibilities α = −∞ and β = +∞ are not excluded) and ϑ is piecewise C2 in the
following sense:

(i) ϑ is continuous on an open set O containing �;
(ii) there exist points κ1, κ2, ..., κk in � with α < κ1 < κ2 < ... < κk < β and C2

functions ϑ j : O → R ( j = 0, 1, ..., k) such that

ϑ(ξ) =

⎧⎪⎨
⎪⎩

ϑ0(ξ) for ξ ∈ [α, κ1],
ϑ j(ξ) for ξ ∈ [κ j, κ j+1], j = 1, 2, ..., k − 1,

ϑk(ξ) for ξ ∈ [κk, β].

Define

M =
{

j ∈ {1, 2, ...k} | ∇ϑ j−1(κ j) ≤ ∇ϑ j(κ j)
}

and

A j(ξ) = {
(w, z) ∈ R

2 | w + ∇2ϑ j(ξ)z = 0
}
.

Take any ( p̄, v̄) ∈ gph∂ϕ. According to [17],

N(( p̄, v̄); gph∂ϕ) =

⎧⎪⎨
⎪⎩

A0( p̄) if p̄ ∈ (α, κ1),

A j( p̄) if p̄ ∈ (κ j, κ j+1), j = 1, 2, ..., k − 1,

Ak( p̄) if p̄ ∈ (κk, β).

For p̄ = α,

N((α, v̄); gph∂ϕ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

{(w, z) ∈ R
2 | z = 0} if v̄ < ∇ϑ0(α),

{(w, z) ∈ R
2 | z = 0} ∪ A0(α)

∪{(w, z) ∈ R
2 | w + ∇2ϑ0(α)z ≤ 0, z ≥ 0}

if v̄ = ∇ϑ0(α).

For p̄ = β,

N((β, v̄); gph∂ϕ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{(w, z) ∈ R
2 | z = 0} if v̄ > ∇ϑk(β),

{(w, z) ∈ R
2 | z = 0} ∪ Ak(β)

∪{(w, z) ∈ R
2 | w + ∇2ϑk(α)z ≥ 0, z ≤ 0}

if v̄ = ∇ϑk(β).
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For p̄ = κ j with j ∈ {1, 2, ..., k}, there are two cases:

(a) j ∈ M. Then

N((κ j, v̄); gph∂ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(w, z) ∈ R
2 | z = 0} if ∇ϑ j−1(κ j) < v̄ < ∇ϑ j(κ j),

{(w, z) ∈ R
2 | z = 0} ∪ A j−1(κ j)

∪{(w, z) ∈ R
2 | w + ∇2ϑ j−1(κ j)z ≥ 0, z ≤ 0}

if v̄ = ∇ϑ j−1(κ j),

{(w, z) ∈ R
2 | z = 0} ∪ A j(κ j)

∪{(w, z) ∈ R
2 | w + ∇2ϑ j(κ j)z ≤ 0, z ≥ 0}

if v̄ = ∇ϑ j(κ j),

provided that ∇ϑ j−1(κ j) < ∇ϑ j(κ j), and

N((κ j, v̄); gph∂ϕ) = A j−1(κ j) ∪ A j(κ j)

∪ {
(w, z) ∈ R

2 | − ∇2ϑ j−1(κ j)z ≤ w ≤ −∇2ϑ j(κ j)z
}
,

provided that v̄ = ∇ϑ j−1(κ j) = ∇ϑ j(κ j).

(b) j �∈ M. Then v̄ cannot lie between ∇ϑ j−1(κ j) and ∇ϑ j(κ j), and hence one has

N((κ j, v̄); gph∂ϕ)

=
{

{(w, z) ∈ R
2 | w + ∇2ϑ j−1(κ j)z ≥ 0} if v̄ = ∇ϑ j−1(κ j),

{(w, z) ∈ R
2 | w + ∇2ϑ j(κ j)z ≤ 0} if v̄ = ∇ϑ j(κ j).

(4.17)

We now focus on the class of separable extended-real-valued functions of many
variables ϕ : R

n → R̄ given by

ϕ(x) =
n∑

i=1

ϕi(xi), (4.18)

where each ϕi : R → R̄ has the structure (Eq. 4.16) and satisfies all the assumptions
imposed in (i) and (ii). This class of functions is important for the studying math-
ematical programs with equilibrium constraints which frequently arise in modeling
some mechanical equilibria [17].

Theorem 4.10 Let ϕ : R
n → R̄ be def ined as in Eq. 4.18. If the PSD property

(Eq. 3.1) is satisf ied, then ϕ is convex.

Proof Case 1: n = 1. Then ϕ is defined as in Eq. 4.16. Since ϕ is continuous on
[α, β] ∩ R and ϕ(x) = +∞ for x �∈ [α, β], it suffices to prove that ϕ is convex on (α, β).

We will show that M = {1, 2, ..., k}. To the contrary suppose that there exists an index
j ∈ {1, 2, ..., k}\M. Then Eq. 4.17 holds. Thus, for (x, y) = (κ j, ∇ϑ j−1(κ j)),

z ∈ ∂2ϕ(x, y)(u) ⇐⇒ z − ∇2ϑ j−1(κ j)u ≥ 0.

Hence for u = −1 and z = |∇2ϑ j−1(κ j)| + 1, we have z ∈ ∂2ϕ(x, y)(u) and zu < 0.

This contradicts Eq. 3.1. Hence M = {1, 2, ..., k}. Since ϕ is twice continuously
differentiable at each x ∈ (α, β)\{κ1, κ2, ..., κk}, ∂2ϕ(x, y)(u) = {∇2ϕ(x)∗(u)}, where
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y = ∇ϕ(x). By Eq. 3.1, ∇2ϕ(x) ≥ 0. It follows that ∂ϕ(·) = {∇ϕ(·)} is monotone on
each one of the intervals (α, κ1), (κ j, κ j+1) ( j = 1, 2, ..., k − 1), and (κk, β). Besides,

∂ϕ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{∇ϑ0(x)} if x ∈ (α, κ1),

{∇ϑ j(x)} if x ∈ (κ j, κ j+1) ( j = 1, 2, ..., k − 1),

{∇ϑk(x)} if x ∈ (κk, β),

[∇ϑ j−1(κ j),∇ϑ j(κ j)] if x = κ j ( j ∈ M = {1, 2, ..., k}).
Hence ∂ϕ(·) is monotone on (α, β) and, therefore, ϕ is convex on (α, β).

Case 2: n > 1. For any (x, y) ∈ R
n × R

n with y ∈ ∂ϕ(x) and u ∈ R
n,

∂2ϕ(x, y)(u) = {ω ∈ R
n | (ωi,−ui) ∈ N((xi, yi); gph∂ϕi), i = 1, 2, ..., n};

see [17, Theorem 4.3]. Hence Eq. 3.1 yields ziui ≥ 0 for all ui ∈ R, zi ∈ ∂2ϕi(xi, yi)(ui)

with (xi, yi) ∈ gph∂ϕi (i = 1, 2, ..., n). According to the analysis already given in
Case 1, ϕi is convex for i = 1, 2, ..., n. Hence ϕ is convex. ��

5 Characterizations of Strong Convexity

Strong convexity of real-valued functions in a neighborhood of a given point is of a
frequent use in formulating sufficient optimality conditions and stability criteria for
extremum problems, in theory of optimization algorithms. We are going to derive
from the above results some criteria for strong convexity of real-valued functions.

A function ϕ : R
n → R ∪ {+∞} is said to be strongly convex on a convex subset

� ⊂ domϕ if there exists a constant ρ > 0 such that the inequality

ϕ((1 − t)x + ty) ≤ (1 − t)ϕ(x) + tϕ(y) − ρt(1 − t)‖x − y‖2

holds for any x, y ∈ � and t ∈ (0, 1). It is well known (see, e.g., [24, Lemma 1, p. 184])
that the last condition is fulfilled if and only if the function

ϕ̃(x) := ϕ(x) − ρ‖x‖2 (5.1)

is convex on �.
Using second-order subdifferential mappings, we can formulate necessary condi-

tions for strong convexity of a real function as follows.

Theorem 5.1 Let ϕ : R
n → R̄ be proper lower semicontinuous. If ϕ is strongly con-

vex on R
n with the constant ρ > 0, then for any (x, y) ∈ gph∂ϕ the second-order

subdif ferential mappings ∂2ϕ(x, y) : R
n ⇒ R

n and ∂̂2ϕ(x, y) : R
n ⇒ R

n satisfy the
conditions

〈z, u〉 ≥ 2ρ‖u‖2 for all u ∈ R
n and z ∈ ∂2ϕ(x, y)(u) with (x, y) ∈ gph∂ϕ (5.2)

and

〈z, u〉 ≥ 2ρ‖u‖2 for all u ∈ R
n, z ∈ ∂̂2ϕ(x, y)(u) with (x, y) ∈ gpĥ∂ϕ. (5.3)

Proof Since Eq. 5.2 implies Eq. 5.3, it suffices to prove Eq. 5.2. By our assumption,
the function ϕ̃ given by Eq. 5.1 is convex on R

n. Applying the subdifferential sum rule
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with equality [16, Prop. 1.107(ii)] for the sum ϕ̃ = ϕ + ψ , where ψ(x) = −ρ‖x‖2, we
find

∂ϕ̃(x) = ∂ϕ(x) − 2ρx ∀x ∈ R
n. (5.4)

(Note that, in the case under consideration, ∂ϕ(x) consists of those ξ ∈ R
n with the

property that 〈ξ, v − x〉 ≤ ϕ(v) − ϕ(x) for all v ∈ R
n.) Now, setting F(x) = ∂ϕ(x),

f (x) = −2ρx, and using the coderivative sum rule with equality [16, Prop. 1.62(ii)],
we get

D∗(F + f )(x, y − 2ρx)(u) = D∗ F(x, y)(u) − 2ρu

for any x ∈ R
n, y ∈ ∂ϕ(x), and u ∈ R

n. The latter in a combination with Eq. 5.4
implies that

∂2ϕ̃(x, y − 2ρx)(u) = ∂2ϕ(x, y)(u) − 2ρu ∀x ∈ R
n, ∀y ∈ ∂ϕ(x), ∀u ∈ R

n. (5.5)

According to Theorem 3.2, from the convexity of ϕ̃ it follows that the second-order
subdifferential mapping ∂2ϕ̃(·) is PSD. Hence, by Eq. 5.5 we obtain 〈z − 2ρu, u〉 ≥ 0
for any z ∈ ∂2ϕ(x, y)(u); thus Eq. 5.2 holds for every (x, y) ∈ gph∂ϕ. ��

The next proposition describes sufficient conditions for the strong convexity of
some classes of real functions.

Theorem 5.2 Let ϕ : R
n → R be a function and ρ > 0 a given number. The following

assertions are valid:

(i) If ϕ is a C1,1 function and if Eq. 5.3 is fulf illed for any (x, y) ∈ gph∂ϕ, then ϕ is
strongly convex on R

n with the constant ρ > 0.
(ii) If n = 1, ϕ is a C1 function, and the condition Eq. 5.3 is fulf illed for any (x, y) ∈

gph∂ϕ, then ϕ is strongly convex on R with the constant ρ > 0.

(iii) If ϕ(x) =
n∑

i=1
ϕi(xi), where each ϕi : R → R̄ has the structure (Eq. 4.16), and if

Eq. 5.2 is fulf illed for any (x, y) ∈ gph∂ϕ, then ϕ is strongly convex on R
n with

the constant ρ > 0.

Proof Define ϕ̃, F, and f as in the above proof.

(i) By the sum rules with equalities for Fréchet subdifferentials and coderivatives
[16, Props. 1.107(i) and 1.62(i)], we can perform some simple calculations as
those in the proof of Theorem 5.1 to get

∂̂2ϕ̃(x,∇ϕ(x) − 2ρx)(u) = ∂̂2ϕ(x,∇ϕ(x))(u) − 2ρu ∀x ∈ R
n, ∀u ∈ R

n. (5.6)

From Eqs. 5.3 and 5.6 it follows that ∂̂2ϕ̃(x,∇ϕ(x) − 2ρx) is PSD for any x ∈
R

n. Thus, the C1,1 function ϕ̃ is convex on R
n according to Theorem 4.2. Then

ϕ is strongly convex on R
n with the constant ρ > 0.

(ii) Since the sum rules with equalities for Fréchet subdifferentials and coderiva-
tives [16, Props. 1.107(i) and 1.62(i)] are applicable to the present C1 setting,
Eq. 5.6 is valid. Hence the C1 function ϕ̃ : R → R is convex by Theorem 4.4,
and the desired conclusion follows.
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(iii) Applying Eq. 5.5 and the assumptions made, we can assert that ∂2ϕ̃(·) is PSD.
Since

ϕ̃(x) =
n∑

i=1

(
ϕi(xi) − ρx2

i

)

has the decomposable structure required by Theorem 4.10, it follows that ϕ̃ is
convex on R

n; hence ϕ is strongly convex on R
n with the constant ρ > 0. ��

6 Open Questions

We have obtained several necessary and sufficient conditions for the convexity of
extended-real-valued functions on finite-dimensional Euclidean spaces.

The following questions remain open, thus require further investigations:

1. Is it true that, for any C1 function ϕ : R
n → R with n ≥ 2, condition 3.2 implies

the convexity of ϕ?
2. Is it true that, for any locally Lipschitz function ϕ : R

n → R, condition 3.1 implies
the convexity of ϕ?

3. Is it true that, for any continuous function ϕ : R
n → R, condition 3.1 implies the

convexity of ϕ?
4. How to extend the obtained results to the infinite-dimensional Hilbert space

setting and, furthermore, to an infinite-dimensional Banach space setting?
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