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ABSTRACT 

 
In this paper, we discuss a special class of continuous linear programming problems which 
can be called simple continuous linear programming problems (SP). A practical and effi-
cient method for finding an approximate optimal value and optimal solution of (SP) is pre-
sented. The main work of computing an approximate optimal value in the provided method 
is only to solve finite linear programming problems by using recurrence relations. Further-
more, a simple algorithm can be employed not only to easily solve the (SP) problem but 
also to provide an error bound of optimal value as well. Some numerical examples are 
given to implement the algorithm. 
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1. 1INTRODUCTION 
 
Continuous linear programming problems 

(CLP) proposed by Bellman [7, 8] in connection with 
the so-called bottleneck problems in multistage linear 
production processes, which are formulated as fol-
lows: 
(CLP) :

0
maximize ( ) ( )

T
f t x t dt∫  

0subject to ( ) ( ) ( , ) ( ) ( ),
( ) 0, [0, ],

tB t x t K s t x s ds g t
x t t T

+ ≤∫
≥ ∈

 

where ( )B t , K(s, t) are given m n×  matrices, ( )f t  
is a given n-vector, ( )g t  is a given m-vector and 

( )x t  is an n-vector to be determined. Here all vectors 
are column vectors. In the literature, much research 
has been proposed to consider continuous linear pro-
gramming problems. Studies on investigating a solu-
tion algorithm for (CLP), [9, 10, 14, 16, 24] provided 
a generation of the simplex method to a function 
space setting. Considering the duality of (CLP), [12, 
13, 17, 25, 26] established strong duality theorems. 
Also, Ho-Lur-Wu [15] studied extreme points of the 
feasible region for a special class of continuous linear 
programming problem. Studying a special case of 
(CLP), Anderson [1] introduced the separated con-
tinuous linear programs (SCLP) to model job-shop 
scheduling problems. Since then many researches 
concerned with (CLP) has focused on (SCLP) [2, 4-6, 
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11, 18-23, 27]. One of a practical example of bottle-
neck problems is described as follows [3]. 

In an economy, n different goods, G1, G2, . . . , 
Gn, are produced by m different types of plan or pro-
duction facility, P1, P2, . . . ,Pm. At the beginning of a 
five-year plan, there is available a certain capacity in 
each of these types of plant, and more can be made 
by reinvesting the goods produced. The aim of the 
plan is to maximize the productive capacity at the end 
of the period. 

Let xj(t), j = 1, 2, . . . ,m, denote the rate of 
production of new capacity of type j at time t. Pro-
duction of new plant requires the consumption of a 
certain quantity bij of good Gi for each additional unit 
of plan Pj. Thus the amounts of goods consumed in 
this way are given by Bx(t), where x(t) is the vector 
with components x1(t), x2(t), . . . , xm(t) and B is the 
matrix whose i, jth element is bij . Let zj(t) denote the 
total productive capacity of type j available at time t. 
Denote by dij the rate of production of Gi for each unit 
of plant Pj . Then the total rates of production of 
goods at time t are given by Dz(t), where D is the 
matrix whose i, jth element is dij and z(t) is the vector 
(z1(t), z2(t), . . . , zm(t))T . 

The constraint on investment in additional 
plant due to limitations in productive capacity is then 
given by ( ) ( )Bx t Dz t≤  throughout the time period 
under consideration. If c0 is the vector of initial pro-
ductive capacities, we can write 

0 0
( ) ( ) ,

t
z t c x s ds c= + ≤∫ and hence 
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0
( ) ( ) ,

t
Bx t Dx s ds c− ≤∫ where 0.c Dc=  If we wish to 

maximize a weighted sum, ( ),i ia z T∑
 
of the pro-

duction capacities at the end of the time period, then 
we obtain the following linear program 
maximize   

0
( )

T Ta x t dt∫  

subject to   
0

( ) ( ) ,
t

Bx t Dx s ds c− ≤∫  

( ) 0, [0, ].x t t T≥ ∈  
In this paper we discuss a special case of con-

tinuous linear programming problems. This continu-
ous linear programming problem is defined as fol-
lows: 
(SP): maximize 

0
( ) ( )

T
f t x t dt∫  

subject to 
0

( ) ( ) ( ), [0, ]
t

x t x s ds g t t T− ≤ ∀ ∈∫  

( ) [0, ],x t L T+
∞∈  

where f and g are continuous functions on [0,T] and 
[0, ]L T+

∞   is the set of nonnegative real valued, 
Lebesgue measurable, essentially bounded functions 
on [0,T]. The dual problem (DSP) of (SP) is defined 
as follows: 
(DSP): maximize 

0
( ) ( )

T
g t w t dt∫  

subject to ( ) ( ) ( ), [0, ]
T

t
w t w s ds f t t T− ≥ ∀ ∈∫  

( ) [0, ].w t L T+∈ ∞  
It is well known that (SP) and (DSP) have the 

weak duality property (see, for example [3]), that is, 
if x(t) and w(t) are feasible for (SP) and (DSP) re-
spectively, then 

0
( ) ( )

T
f t x t dt ≤∫ 0

( ) ( ) .T g t w t dt∫  In-

deed, the (SP) problem we studied is a special case of 
Tyndall’s work [25], which is an application to a dy-
namic closed end Leontief production model. By 
Theorem 1 of [25] there exist optimal solutions x(t) 
and w(t) in (SP) and (DSP) respectively such that 

0 0
( ) ( ) ( ) ( ) .

T T
f t x t dt g t w t dt=∫ ∫  However, Tyndall’s 

work only verified the theoretical result of optimal 
solution. It seems too complex to find the optimal 
solution in the work of computation. Motivated by 
this factor, we intend to present an efficient algorithm 
to approach the optimal value of (SP) by using recur-
rence method. This method can be employed not only 
to easily solve the (SP) problem but also to provide 
an error bound of optimal value as well. For improv-
ing the readability, we define the notations F(P) and 
V(P) to be the feasible region and the optimal value 
of a linear programming problem (P), respectively. 
For example, F(SP) is the feasible region and V(SP) 
is the optimal value of (SP).  

This paper is organized as follows. In Section 2, 
a discretization method is prepared for the proof of 
the main theorem in the following sections. Applying 
this discretization method we can obtain a sequence 

of optimal solutions of corresponding finite linear 
programming problems in Section 3. Then the corre-
sponding value obtained from this sequence finally 
converges to the optimal value of (SP). In Section 4, 
we establish an error bound for the provided method 
and give some examples to illustrate the convergence 
of problem. Brief conclusion is given in Section 5. 
 
2. PRELIMINARY RESULTS 
 

For solving the (SP) and (DSP) problems, we 
use a discretization method for two functions f and g. 

For each n N∈ , let
2

1 2 2 1{0, , , ,
2 2 2

n

n n n nP T T T−
= …  

, }T   be a partition on [0,T]. For i = 1, 2,… , 2n , let 
 

( ) 1min{ ( ) : [ , ]}
2 2

n
i n n

i ib g x x T T−
= ∈                                 (1) 

 
and 
 

( ) 1min{ ( ) : [ , ]}.
2 2

n
i n n

i ic f x x T T−
= ∈                                (2) 

 
Step functions ( )nf t  and ( )ng t  are defined as fol-
lows: 
 

( )

( )

2

1, for [ , ),
2 2( )

, for ,

n
i n n

n
n
n

i ic t T T
f t

c t T

−⎧ ∈⎪= ⎨
⎪ =⎩

                              (3) 

 
and 
 

( )

( )

2

1, for [ , ),
2 2( )

, for .

n
i n n

n
n
n

i ib t T T
g t

b t T

−⎧ ∈⎪= ⎨
⎪ =⎩

                                                         (4) 

 
Consider the following programming problem: 
(SPn) :

0
maximize ( ) ( )

T

nf t x t dt∫  

0
subject to  ( ) ( ) ( ), [0, ]

( ) [0, ],

t

nx t x s ds g t t T

x t L T+
∞

− ≤ ∀ ∈

∈

∫
 

and its dual problem: 

0
( ): minimize  ( ) ( )

           subject to ( ) ( ) ( ), [0, ]

        ( ) [0, ].

T

n n

T

nt

DSP g t w t dt

w t w s ds f t t T

w t L T+
∞

− ≥ ∀ ∈

∈

∫
∫

 
Assumption 1. f and g are continuous on [0,T], and 
g(t) > 0 for all t∈ [0, T]. 
 

In this article, we always employ Assumption 1 
to solve the continuous linear programming problems 
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(SP) and (DSP). Note that, under Assumption 1, we 
have the following properties. 
(1) (SP) and (SPn) are feasible for all n∈N, since the 
zero function is a common feasible solution of (SP) 
and (SPn). Moreover, let * ( ) T tw t ke −� , where 

[0, ]max { ( ),  0}.t Tk f t∈=  Then * *( ) ( )
T

t
w t w s ds k− =∫  

( ) ( ),nf t f t≥ ≥  for all t∈ [0, T]. Hence *w (t) is a 
common feasible solution of (DSP) and (DSPn) for all 
n∈N. Therefore, (SP), (DSP), (SPn) and (DSPn) are 
all feasible. 
(2) Since g1(t) ≤ g2(t) ≤ ··· ≤ g(t) and f1(t) ≤ f2(t) 
≤ ···≤ ( )f t  for all t∈[0, T], we have 

1 2( ) ( ) ( )F SP F SP F SP⊆ ⊆ ⊆"  
and 

1 2( ) ( ) ( ),F DSP F DSP F DSP⊇ ⊇ ⊇"   
which implies 
 
−∞<V(SP1) ≤ V(SP2) ≤ ··· ≤ V(SP)<∞                                                    (5) 
 
and 
−∞<V(DSP1) ≤ V(DSP2) ≤ ··· ≤ V(DSP) <∞ . 
Hence, 
lim
n→∞

V(SPn) ≤ V(SP) 

and 
 
lim
n→∞

(DSPn) ≤ V(DSP).                                    (6) 

                   
Lemma 1. Suppose that Assumption 1 holds. 
Let ( ) ( )nw t  be a feasible solution of (DSPn), 

[0, ]sup { ( ) ( )}t T nf t f tε ∈= −  and 
[0, ]sup { ( ) ( )}t T ng t g tε ∈′ = − . Let 

( ) ( )( ) ( )n nw t w t=� T teε −+ . Then ( ) ( ) nw t� is a fea-
sible solution of (DSP) and 

( ) ( )

0 0

( )

0 0

0 ( ) ( ) ( ) ( )

( ) ( ) .

T Tn n
n

T Tn T t

g t w t dt g t w t dt

w t dt g t e dtε ε −

≤ −

′≤ +

∫ ∫
∫ ∫

�
 

 
Proof. Observe that ( ) ( )( ) ( ) 0n nw t w t≥ ≥�  and 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )
( ) for all [0, ].

Tn n

t
T Tn T t n T s

t t
Tn n

t

n

w t w s ds

w t e w s ds e ds

w t w s ds

f t
f t t T

ε ε

ε

ε

− −

−

= + − −

= − +

≥ +
≥ ∈

∫
∫ ∫

∫

� �

 
Hence ( ) ( )nw t ∈� F(DSP). Since ( ) ( )( ) ( ) 0n nw t w t≥ ≥�  
and ( ) ( ) 0ng t g t≥ ≥ , we have 

 

( ) ( )

0 0

( )

0 0

( )

0 0

0 ( ) ( ) ( ) ( )

[ ( ) ( )] ( ) ( )

( ) ( ) .

T Tn n
n

T Tn T t
n

T Tn T t

g t w t dt g t w t dt

g t g t w t dt g t e dt

w t dt g t e dt

ε

ε ε

−

−

≤ −

= − +

′≤ +

∫ ∫
∫ ∫
∫ ∫

�

 
Based on Lemma 1, the optimal value of (DSP) 

can be obtained as the following theorem. 
Theorem 1. Under Assumption 1, we have 
lim
n→∞

V(DSPn) = V(DSP). 

 
Proof. Let ε > 0 be given. By continuity of f and g, 
there exists a positive integer N such that for all n≥ N 

( ) ( ) ( )n nf t f t f t ε≤ ≤ +  and ( ) ( ) ( ) ,n ng t g t g t ε≤ ≤ +  
for all t∈ [0,T]. Here ( )nf t  and ( )ng t  are defined 

as in (3) and (4). Let 0 ( )w t  be a feasible solution of 

(DSP) and 00
( ) .

T
w t dt θ=∫  For this ε > 0, we claim 

that for all n≥ N there exists ( ) ( )nw t ∈F(DSPn) such 
that 
 

( )

0
0 ( ) ( ) ( )

T n
n ng t w t dt V DSP ε≤ − ≤∫                              (7) 

 
and 
 

( )

0
( ) ,

T n Mw t dt
m
θ≤∫                                       (8) 

 
where M = [0, ]max t T∈ g(t) and m = [0, ]mint T∈ g(t). We 
prove this claim by distinguishing the following two 
cases. 
Case 1. 00

( ) ( ) ( )
T

n ng t w t dt V DSP ε− ≤∫ . Put ( ) ( )nw t =  
0 ( )w t . Then (7) holds and  

( )
00 0

( ) ( ) .
T Tn Mw t dt w t dt

m
θ θ= = ≤∫ ∫  

Case2. 00
( ) ( ) ( ) .

T

n ng t w t dt V DSP ε− >∫  Then there 

exists ( ) ( ) ( )n
nw t F DSP∈  such that  

 
( )

00 0
( ) ( ) ( ) ( ) ( )

T Tn
n n nV DSP g t w t dt g t w t dt≤ ≤∫ ∫   

 (9) 

 
and 

( )

0
( ) ( ) ( ) .

T n
n ng t w t dt V DSP ε− ≤∫  

Suppose that ( )

0
( ) .

T n Mw t dt
m
θ>∫  As ( )ng t m≥  for 

all t, we have 
( )

0
( ) ( )

T n
n

Mg t w t dt m M
m
θ θ> =∫

 
0 00 0
( ) ( ) ( ) ,

T T

nM w t dt g t w t dt= ≥∫ ∫  

which contradicts (9), 
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hence ( )

0
( )  .

T n Mw t dt
m

θ≤∫ Therefore, (7) and (8) hold. 

Now for n ≥ N we define a function 
( ) ( )( ) ( )n n T tw t w t eε −= +�  for all t∈ [0, T]. By Lemma 

1, ( )nw�  is a feasible solution of (DSP) and 
 

( ) ( )

0 0

( )

0 0

0

0 ( ) ( ) ( ) ( )

[ ( ) ( ) ]

[ ( ) ],

T Tn n
n

T Tn T t

T T t

g t w t dt g t w t dt

w t dt g t e dt

M g t e dt
m

ε

ε θ

−

−

≤ −

≤ +

≤ +

∫ ∫
∫ ∫

∫

�

                   (10) 

 
by (8). Moreover, observe that 

( )

0

( ) ( )

0 0

( )

0

0

0 ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

[ ( ) ] ,

T n
n

T Tn n
n

T n
n n

T T t

g t w t dt V DSP

g t w t dt g t w t dt

g t w t dt V DSP

M g t e dt
m

ε θ ε−

≤ −

= −

+ −

≤ + +

∫
∫ ∫
∫

∫

�

�
 

by (7) and (10). Since ε is arbitrary, 
( )

0
lim ( ) ( ) lim ( )

T n
nn n

g t w t dt V VSP
→∞ →∞

=∫ � . Owing to the fact 

that ( )

0
( ) ( ) ( ),

T ng t w t dt V DSP≥∫ �
 

we obtain 

lim ( ) ( ).nn
V DSP V DSP

→∞
≥  Applying this result and (6), 

we have lim ( ) ( )nn
V DSP V DSP

→∞
= . This completes the 

proof. 
 
3. A RECURRENCE METHOD 

FOR (SP) 
 

In this section we discuss the finite dimen-
sional linear programming problem (Pn) which is due 
to (SP). A recurrence method is then provided for 
solving the dual problem of (Pn) and verifying the 
optimal value of (Pn) is just to the approximate opti-
mal value of (SP). 

For each n∈N, let ( )n
ib and ( )n

ic be defined as 
in (1) and (2). Note that under Assumption 1, we 
have ( )n

ib > 0 for all i. Now we define the following 
linear programming problem: 

( )2

1

( )
1 1

( )
2 22

( ) : maximize
2

1 0
subject to

1

0, 1,..., 2 .

n n
i i

n n
i

n

nT
nn

n

i

Tc x
P

x b

x b

ix

=

−

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ≤⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

≥ ∀ =

∑

% # #

 
It is easy to see that the zero vector is a feasible 

solution of (Pn) and the dual problem (Dn) of (Pn) is 
defined as follows: 

( )2

1

( )
2 1 1

( )
22

( ) : minimize
2

1

subject to
0 1

0, 1,..., 2 .

n n
i i

n n
i

T n
n

n
nn

n
i

Tb w
D

w c

w c

w i

=

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

≥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

≥ ∀ =

∑

% # #

 
 
Remark 1. Under Assumption 1, it is easy to obtain 
an optimal solution of (Dn) via the following recur-
rence method; hence, through the strong duality the-
ory of finite linear programming we have −∞< V(Pn) 
= V(Dn) <∞ . To find an optimal solution of (Dn), let 

( )nw = ( ) ( )
1 2

( ,..., )n n T
nw w , where ( ) ( )

2 2
max{ ,0}n n

n nw c=
 

and 
2

( ) ( ) ( )
1

1

max{ ,0}, 1,2,..., 2 1.
2

n

n n n n
i n

l i

Tw c w i
= +

= + = −∑
 

It is obvious that ( )nw is a feasible solution of (Dn). 
Now we show that ( )nw  is an optimal solution of 
(Dn). Let 1 2 2

( , , ..., ) ( )T
n nw w w w F D= ∈  be given. 

Clearly, ( ) ( )

2 2 2
max{ , 0} .n n

n n nw c w≥ =
 
We claim 

( )n
k kw w≥  for all k = 1, 2, . . . 2n , and prove it by in-

duction. Suppose that ( )n
j jw w≥  for all j = k +1, k + 

2, . . . , 2n . Since w  is a feasible solution, we have 

2
T

k nw ≥ ( )
1 2 2

( )n
n

k k kw w w c+ ++ + + +" . Thus, 

( )
1 2 2

( ) ( ) ( ) ( )
1 2 2

( )

max{ ( ),0}
2

   max{ ( ),0}
2

     = .

n
k k k k nn

n n n n
k n k k n

n
k

Tw c w w w

Tc w w w

w

+ +

+ +

≥ + + + +

≥ + + + +

"

"  

Therefore, ( )n
k kw w≥  for all k = 1, 2, . . . 2n . This 

proves the claim. Applying Assumption 1, ( ) 0n
ib >  

for all i; hence, 2 ( )
1 2

n nT
i i in b w=∑ 2 ( ) ( )

1 2
.

n n nT
i i in b w=≥∑  

Since ( )nw F D∈  is arbitrary, we see that ( )nw is an 
optimal solution of (Dn).  

After the discussion of optimal solution for 
(Pn) and (Dn) problems, the optimal values of rela-
tionship between V(SPn) and V(Pn) are considered as 
follows. 
 
Theorem 2. Suppose that Assumption 1 holds. Then 
V(SPn)≥ V(Pn), for all n = 1, 2, . . .. 
 
Proof. Let x= 1 2

( ,..., )T
nx x

 
be an optimal solution of 

(Pn). Define x(t) by 
( 1)

i 2 2

2

, for , 1, 2,..., 2
( )=

, for .

i T niT
n n

n

x t i
x t

x t T

−⎧ ≤ < =⎪
⎨

=⎪⎩  
Case 1. ( 1)

2 2
[ , ),i T iT

n nt −∈ where 1≤ i≤ 2n . Then 
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0
1

( 1)
1 2
1

( )

1

( ) ( )

( )
2

( ).
2

t

i t
i Ti jn

nj

i
n

i j i nn
j

x t x s ds

Tx x x s ds

Tx x b g t

−

−
=

−

=

−

= − −

≤ − ≤ ≤

∫

∑ ∫

∑
 

Case 2. t = T. Then 
2

20
1

2 1
( )
22

1

( ) ( )
2

( ).
2

n
T

n in
i

n
n

n i n nn
i

Tx T x s ds x x

Tx x b g T

=

−

=

− = −

≤ − ≤ ≤

∑∫

∑  

By case 1 and case 2, x(t) is a feasible solution for 
(SPn). It is easy to see that 

2
( )

0
1

( ) ( ) ( ).
2

n
T n

n i i nn
i

Tf t x t dt c x V P
=

= =∑∫
 

Therefore, V(SPn)≥ V(Pn). This completes the proof. 
According to Theorem 2, one can easy to see 

that V(DSPn)≥ V(SPn)≥ V(Pn)=V(Dn). That is 
 

V(DSPn)≥ V(Dn), for all n=1,2,…                    (11) 
 
By inequality (5) and Theorem 2, one can easily see 
that 
 
V(DSP)≥ V(SP)≥ V(SPn)≥ V(Pn)=V(Dn), 
for all n=1,2,….                            (12) 
 
Theorem 3. Suppose that Assumption 1 holds. 
Then 
lim ( ) lim ( ).n nn n

V D V DSP
→∞ →∞

=
 

 
Proof. Let ( ) ( ) ( )

1 2
( ,..., )n n n T

nw w w= , as given in Remark 

1, be an optimal solution of (Dn). Define a function 
ˆ ( )w t  by 

 
( ) 1

2 2 2
( )

2 2

, for , 1, 2,...2
ˆ

, for ,

n T t ni i
i n n n

n
n n

w e T t T i
w

w t T

δ

δ

− −⎧ + ≤ ≤ =⎪= ⎨
+ =⎪⎩

 

                                                                        (13) 
 

where ( )

2 2
max{ : 1, , 2 }.n nT

n jn w jδ = = …  We first 

show that ˆ ( )w t ∈F(DSPn). For t∈ [ 1
2 2

,i i
n nT T− ), we 

have 

2
22 1

1 2

ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) [ ( ) ( ) ]

T

t
jni TT nn

jt Tj i n

w t w s ds

w t w s ds w s ds−
= +

−

= − +

∫

∑∫ ∫

( ) ( ) 2
2 22

2 2
( ) 2

1 2
1 1 2

( ) [ ( )

    ]
2

i Tn T t n T si n
i n i nn t

n n i T
nn T s

jj nn Tj i j i n

w e w T t e ds

T w e ds

δ δ

δ

− −

−
−

= + = +

= + − − + +

+

∫

∑ ∑ ∫
2

( ) ( ) ( )

2 22 2
1

( ) (1 )
n

n T t n n T ti T
i n i j nn n

j i

w e w T t w eδ δ− −

= +

= + − − − + −∑
2

( ) ( ) ( )

2
1
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Also, it is clear that 
( ) ( )

2 2 2
ˆ ˆ ˆ( ) ( ) ( ),

T n n
n n n nT

w T w s ds w c f Tδ− = + ≥ =∫  
hence 

ˆ ( )w t  is a feasible solution of (DSPn). Moreover, 
observe that 

2
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20 0
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2 0
1

2 0
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This and (11) together imply that 
 
V(Dn)≤ V(DSPn)≤ V(Dn)+

2 0
( ) .

T T t
n g t e dtδ −∫                  

(14) 

 
We now claim that 

2nδ →0 as n→∞ . To prove this 

claim, we need to prove the following fact by induc-
tion: 

( )

2
(1 )

2
n j
n nj

Tw L
−
≤ + , for all 0,1,2, ,2 1nj = −… , 

where 0max { ( ),  0}.t TL f t≤ ≤= Note that  
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≤ ≤
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Suppose that 
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2
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2
n k
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−
≤ + , for all 0,1,2, , 1.k j= −…

 
Then 
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This proves the fact, which implies 
( ) 2 2(1 ) (1 )

2 2
n nn j T

j n n

T Tw L L e L−≤ + ≤ + ≤ , 

for all 0,1,2, ,2 1.nj = −…  
Thus, 

( )

2 1 2
0 max{ } .

2 2
n T

n jn nnj

T Tw e Lδ
≤ ≤

≤ = ≤  

Hence, 

2nδ →0 as n→∞ . 
This proves the claim. Applying (14), (15), and 
Theorem 2, we see that lim ( ) lim ( )n nn n

V D V DSP
→∞ →∞

= . 

This completes the proof.  
By inequality (12), Theorem 3 and Theorem 1, 

we have ( ) ( ) lim ( ) ( ).nn
V DSP V SP V D V DSP

→∞
≥ ≥ =

 
Therefore, ( ) ( ) lim ( ),nn

V DSP V SP V D
→∞

= =  so we 

have the following theorem. 
 
Theorem 4. Suppose that Assumption 1 holds. Then  
V(DSP)=V(SP)= lim

n→∞
V(Dn); that is, there is no duality 

gap between (SP) and (DSP). 
 
4. THE SOLUTION ALGORITHM 
 

In this section, we discuss an error bound be-
tween V(DSP) and V(Dn). An algorithm to approach 
the optimal value of (SP) is established as well. Let 

( ) ( ) ( )
1 2

( , ..., )n n n T
nw w w=  be an optimal solution of (Dn) 

as given in Remark 1. Let 
2

maxnδ =  
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2
{ : 1,...2 },n nT

jn w j =  [0, ]sup { ( ) ( )},t T nf t f tε ∈= −  

and [0, ]sup { ( ) ( )}t T ng t g tε ∈′ = − . Then we have the 
following result. 

 
Theorem 5. Suppose that Assumption 1 holds. Then 
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Proof. Let ( ) ( ) ( )

1 2
( , ..., )n n n T

nw w w=  be an optimal solu-

tion of (Dn) and ( )ˆ ( )nw t  be defined as in (13). 
Through the proof of Theorem 3, we see that ( )ˆ ( )nw t   
is a feasible solution for (DSPn), and 
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This completes the proof. 
According to Theorems 4 and 5, we summarize 

the preceding discussions to form the following pro-
cedure for finding the approximate optimal value of 
(SP). 
 
Algorithm: 

Let δ  be a prescribed small positive number, 
and an initial number 0n N∈  be given. 
Step 1. Set n← 0n . 
Step   2. Calculate ( )n

iw  for 1,2, ,2ni = …  by the re-
currence method as in Remark 1. Evaluate the error 
bound nε  as defined in Theorem 5. 
Step 3. If nε δ≤ , then stop and evaluate the 

value 2 ( ) ( )
1 2

n n n
i i in

T b w=∑  as the approximate value of 

this problem. Otherwise, update n← n + 1 and go to 
Step 2. 
 
Remark 2. From Theorem 4, we can approach the 
value V(SP) by V(Dn). Note that by the complemen-
tary slackness theorem of finite linear programming, 
we can via the optimal solution ( )nw  of (Dn) to ob-
tain an optimal solution of (Pn), say 

( ) ( ) ( )
1 2

( ,..., ) .n
n n n Tx x x=  Define ( ) ( )nx t  by 
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2 2( )
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Applying the same argument as the proof of Theorem 
2, we see that ( ) ( ) ( )n

nx t F SP∈  (hence 
( ) ( ) ( )nx t F SP∈ ) and ( )

0
( ) ( ) ( )

T n
n nf t x t dt V P=∫ . Since 

( ) ( )nf t f t≤ , by Theorem 5, we have 
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V SP f t x t dt

V SP f t x t dt ε

≤ −

≤ − ≤

∫
∫  

where nε  is defined as in Theorem 5. Therefore, the 

value ( )

0
( ) ( )

T nf t x t dt∫  is an approximate value of 

(SP), and the error between the optimal value and the 
approximate value is less or equal to nε .  

For illustration purpose, we use two examples 
to show that the proposed scheme works for real. 
 
Example 1. 

1 3

0

0

maximize ( 4 1) ( )

subject to ( ) ( ) 1, [0,1]

( ) [0,1].

t

t t x t dt

x t x s ds t t

x t L+
∞

− +

− ≤ + ∀ ∈

∈

∫
∫  

 
Example 2. 

1 2
0

0

maximize sin(7 ) ( )

subject to ( ) ( ) 2 cos(5 ), [0,1]

( ) [0,1].

t

t t x t dt

x t x s ds t t

x t L+
∞

− ≤ + ∀ ∈

∈

∫

∫

 
 
To illustrate the convergence, we select the partition 
number n from 1 to 20 and put ( ) min{ ( ) :n

ic f x=  
x∈ [ 1

2 2
,i i

n n
− ]} and ( ) 1

2 2
min{ ( ) : [ , ]},n n

n i i
ib g x x −= ∈  for 

all 1,2, ,2ni = … . Using MATLAB Version 7.0.1 on 
a PC for the experiment, the results obtained by run-

ning the program which implement the proposed al-
gorithm are presented in Table 1. 
 

Table 1. Approximate value and error bound for 
Examples 

Example 1 Example 2 
Approxi-

mate value
Error 
bound 

Approxi-
mate value 

Error bound

0 4.5685569 0 3.8425631
0.0039063 2.4053556 0 3.8146648
0.0651855 1.3453512 0.0223334 2.6425267
0.1037215 0.7187507 0.0813532 1.4580851
0.1253131 0.3725119 0.1227353 0.7575707
0.1367418 0.1897665 0.1471074 0.3857337
0.1426215 0.0957909 0.1607905 0.1942189
0.1456082 0.0481262 0.1678167 0.0974643
0.1471327 0.0241213 0.1713737 0.0488146
0.1478977 0.0120753 0.1731669 0.0244271
0.1482809 0.0060413 0.1740682 0.0122184
0.1484726 0.0030216 0.1745198 0.0061104
0.1485686 0.0015110 0.1747459 0.0030555
0.1486166 0.0007556 0.1748590 0.0015278
0.1486406 0.0003778 0.1749156 0.0007639
0.1486526 0.0001889 0.1749439 0.0003820
0.1486586 0.0000945 0.1749580 0.0001910
0.1486616 0.0000472 0.1749651 0.0000955
0.1486631 0.0000236 0.1749686 0.0000477
0.1486639 0.0000118 0.1749704 0.0000239

 
 
 

 
Figure 1. The trending diagram of Example 1 

 
 

 
Figure 2. The trending diagram of Example 2 
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Depending on the approximate values and error 
bounds in Table 1, trending diagrams were con-
structed as represented in Figures 1 and 2 for Exam-
ples 1 and 2, respectively. From these figures, we can 
easily observe how these continuous linear program-
ming problems come to a convergent value. 
 
5. CONCLUSION 
 

In the literature, some classic contributions in-
troduced the separated concept to investigate the con-
tinuous linear programming problems. However, 
most of these researches focused on verifying the 
theoretical result of optimal solution. In this study, 
we concerned with how the approximate optimal 
value and optimal solution of simple continuous lin-
ear programming problems (SP) can be easily ob-
tained. First using a discretization method we obtain 
finite dimensional linear programming problems (Pn) 
from (SP). Then a recurrence method is provided for 
solving the dual problem of (Pn) and we also verify 
that its optimal value is just to the approximate opti-
mal value of (SP). Moreover, the optimal solution of 
(Pn) can be derived by the complementary slackness 
theorem. Based on the optimal solution of (Pn), we 
can easily construct an approximate optimal solution 
of the simple continuous linear programming prob-
lem (SP). 
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以遞迴方法求解連續型的線性規劃問題 
 

溫慶豐* 
高雄醫學大學通識教育中心 

807 高雄市三民區十全一路 100 號 
吳炎崑、盧永毅 

萬能科技大學工業管理系 
 

摘要 
 

本文主要探討一種特殊情況下的連續型線性規劃問題，簡稱為(SP)問題。針對此一問

題，本文提出一種有效率的方法來找尋(SP)問題的近似最佳解及近似最佳值，此法只

需要利用遞迴關係求解一個有限維的線性規劃問題，即可找出原問題的近似最佳解及

近似最佳值。本文就(SP)問題的求解程序提出一個演算法，此演算法不僅能容易的求

解(SP)問題，並能估算近似值的誤差。最後列舉例子來證實本文所提演算法的可行性。 
 
關鍵詞：連續型線性規劃問題，遞迴方法 
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